Xu Yang, Dezhi Chen, Li Feng, Gang Qin, Shiping Wu,  and Ruirun Chen, Enhancing the mechanical properties of casting eutectic high-entropy alloys via W addition, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1364-1372. https://doi.org/10.1007/s12613-024-2892-x
Cite this article as:
Xu Yang, Dezhi Chen, Li Feng, Gang Qin, Shiping Wu,  and Ruirun Chen, Enhancing the mechanical properties of casting eutectic high-entropy alloys via W addition, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1364-1372. https://doi.org/10.1007/s12613-024-2892-x
Research Article

Enhancing the mechanical properties of casting eutectic high-entropy alloys via W addition

+ Author Affiliations
  • Corresponding authors:

    Dezhi Chen    E-mail: chendezhi383@163.com

    Ruirun Chen    E-mail: ruirunchen@hit.edu.cn

  • Received: 20 December 2023Revised: 28 February 2024Accepted: 22 March 2024Available online: 23 March 2024
  • The effect of W element on the microstructure evolution and mechanical properties of Al1.25CoCrFeNi3 eutectic high-entropy alloy and Al1.25CoCrFeNi3−xWx (x = 0, 0.05, 0.1, 0.3, and 0.5; atomic ratio) high-entropy alloys (HEAs) were explored. Results show that the Al1.25CoCrFeNi3−xWx HEAs are composed of face-centered cubic and body-centered cubic (BCC) phases. As W content increases, the microstructure changes from eutectic to dendritic. The addition of W lowers the nucleation barrier of the BCC phase, decreases the valence electron concentration of the HEAs, and replaces Al in the BCC phase, thus facilitating the nucleation of the BCC phase. Tensile results show that the addition of W greatly improves the mechanical properties, and solid-solution, heterogeneous-interface, and second-phase strengthening are the main strengthening mechanisms. The yield strength, tensile strength, and elongation of the Al1.25CoCrFeNi2.95W0.05 HEA are 601.44 MPa, 1132.26 MPa, and 15.94%, respectively, realizing a balance between strength and plasticity. The fracture mode of the Al1.25CoCrFeNi3−xWx HEAs is ductile–brittle mixed fracture, and the crack propagates and initiates in the BCC phase. The eutectic lamellar structure impedes crack propagation and maintains plasticity.
  • loading
  • [1]
    S.T. Zhang, X. Ding, X.F. Gao, et al., Dual enhancement in strength and ductility of Ti–V–Zr medium entropy alloy by fracture mode transformation via a heterogeneous structure, Int. J. Plast., 160(2023), art. No. 103505. doi: 10.1016/j.ijplas.2022.103505
    [2]
    J.H. Liu, X.M. Zhao, S.M. Zhang, Y.W. Sheng, and Q. Hu, Microstructure and mechanical properties of MoNbTaW refractory high-entropy alloy prepared by spark plasma sintering, J. Mater. Res., 38(2023), No. 2, p. 484. doi: 10.1557/s43578-022-00833-6
    [3]
    H. Ren, R.R. Chen, T. Liu, et al., Unraveling the oxidation mechanism of Y-doped AlCoCrFeNi high-entropy alloy at 1100°C, Appl. Surf. Sci., 652(2024), art. No. 159316. doi: 10.1016/j.apsusc.2024.159316
    [4]
    Y.S. Li, W.B. Liao, H.C. Chen, et al., A low-density high-entropy dual-phase alloy with hierarchical structure and exceptional specific yield strength, Sci. China Mater., 66(2023), No. 2, p. 780. doi: 10.1007/s40843-022-2178-x
    [5]
    Z. Cheng, S.Z. Wang, G.L. Wu, J.H. Gao, X.S. Yang, and H.H. Wu, Tribological properties of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 389. doi: 10.1007/s12613-021-2373-4
    [6]
    I. Basu and J.Th.M. de Hosson, Strengthening mechanisms in high entropy alloys: Fundamental issues, Scripta Mater., 187(2020), p. 148. doi: 10.1016/j.scriptamat.2020.06.019
    [7]
    D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122(2017), p. 448. doi: 10.1016/j.actamat.2016.08.081
    [8]
    J. Wu, H.G. Zhu, and Z.H. Xie, Strength and ductility synergy of Nb-alloyed Ni0.6CoFe1.4 alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p.707. doi: 10.1007/s12613-022-2567-4
    [9]
    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345(2014), No. 6201, p. 1153. doi: 10.1126/science.1254581
    [10]
    L. Fan, T. Yang, Y.L. Zhao, et al., Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures, Nat. Commun., 11(2020), No. 1, art. No. 6240. doi: 10.1038/s41467-020-20109-z
    [11]
    O.N. Senkov, S. Gorsse, and D.B. Miracle, High temperature strength of refractory complex concentrated alloys, Acta Mater., 175(2019), p. 394. doi: 10.1016/j.actamat.2019.06.032
    [12]
    C. Lee, G. Kim, Y. Chou, et al., Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy, Sci. Adv., 6(2020), No. 37, art. No. eaaz4748. doi: 10.1126/sciadv.aaz4748
    [13]
    N. Xiao, X. Guan, D. Wang, et al., Impact of W alloying on microstructure, mechanical property and corrosion resistance of face-centered cubic high entropy alloys: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1667 doi: 10.1007/s12613-023-2641-6
    [14]
    Y.C. Wu and J.L. Shao, FCC–BCC phase transformation induced simultaneous enhancement of tensile strength and ductility at high strain rate in high-entropy alloy, Int. J. Plast., 169(2023), art. No. 103730. doi: 10.1016/j.ijplas.2023.103730
    [15]
    L.L. Han, X.D. Xu, Z.M. Li, B. Liu, C.T. Liu, and Y. Liu, A novel equiaxed eutectic high-entropy alloy with excellent mechanical properties at elevated temperatures, Mater. Res. Lett., 8(2020), No. 10, p. 373. doi: 10.1080/21663831.2020.1772395
    [16]
    J. Ren, M. Wu, C.Y. Li, et al., Deformation mechanisms in an additively manufactured dual-phase eutectic high-entropy alloy, Acta Mater., 257(2023), art. No. 119179. doi: 10.1016/j.actamat.2023.119179
    [17]
    Y.P. Lu, Y. Dong, S. Guo, et al., A promising new class of high-temperature alloys: Eutectic high-entropy alloys, Sci. Rep., 4(2014), art. No. 6200. doi: 10.1038/srep06200
    [18]
    J.W. Miao, H.W. Yao, J. Wang, Y.P. Lu, T.M. Wang, and T.J. Li, Surface modification for AlCoCrFeNi2.1 eutectic high-entropy alloy via laser remelting technology and subsequent aging heat treatment, J. Alloys Compd., 894(2022), art. No. 162380. doi: 10.1016/j.jallcom.2021.162380
    [19]
    T. Xiong, W.F. Yang, S.J. Zheng, et al., Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1, J. Mater. Sci. Technol., 65(2021), p. 216. doi: 10.1016/j.jmst.2020.04.073
    [20]
    J.J. Shen, J.G. Lopes, Z. Zeng, et al., Deformation behavior and strengthening effects of an eutectic AlCoCrFeNi2.1 high entropy alloy probed by in situ synchrotron X-ray diffraction and post-mortem EBSD, Mater. Sci. Eng. A, 872(2023), art. No. 144946. doi: 10.1016/j.msea.2023.144946
    [21]
    X.T. Duan, T.Z. Han, X. Guan, et al., Cooperative effect of Cr and Al elements on passivation enhancement of eutectic high-entropy alloy AlCoCrFeNi2.1 with precipitates, J. Mater. Sci. Technol., 136(2023), p. 97. doi: 10.1016/j.jmst.2022.07.023
    [22]
    X. Wang, W. Zhai, J.Y. Wang, and B. Wei, Strength and ductility enhancement of high-entropy FeCoNi2Al0.9 alloy by ultrasonically refining eutectic structures, Scripta Mater., 225(2023), art. No. 115154. doi: 10.1016/j.scriptamat.2022.115154
    [23]
    Z.Z. Mao, X. Jin, Z. Xue, M. Zhang, and J.W. Qiao, Understanding the yield strength difference in dual-phase eutectic high-entropy alloys, Mater. Sci. Eng. A, 867(2023), art. No. 144725. doi: 10.1016/j.msea.2023.144725
    [24]
    D. Yun, H. Chae, T. Lee, et al., Stress contribution of B2 phase in Al0.7CoCrFeNi eutectic high entropy alloy, J. Alloys Compd., 918(2022), art. No. 165673. doi: 10.1016/j.jallcom.2022.165673
    [25]
    Q.Q. Liu, X.S. Liu, X.F. Fan, et al., Designing novel AlCoCrNi eutectic high entropy alloys, J. Alloys Compd., 904(2022), art. No. 163775. doi: 10.1016/j.jallcom.2022.163775
    [26]
    C. Liu, Y. Gao, K. Chong, F.Q. Guo, D.T. Wu, and Y. Zou, Effect of Nb content on the microstructure and corrosion resistance of FeCoCrNiNb x high-entropy alloys in chloride ion environment, J. Alloys Compd., 935(2023), art. No. 168013. doi: 10.1016/j.jallcom.2022.168013
    [27]
    D. Fang, X. Wu, W.Q. Xu, et al., Microstructure and properties of a novel cost-effective FeNi-based eutectic high entropy alloys, Mater. Sci. Eng. A, 870(2023), art. No. 144919. doi: 10.1016/j.msea.2023.144919
    [28]
    X.C. Ye, J.Y. Xiong, X. Wu, et al., A new infinite solid solution strategy to design eutectic high entropy alloys with B2 and BCC structure, Scripta Mater., 199(2021), art. No. 113886. doi: 10.1016/j.scriptamat.2021.113886
    [29]
    L. Wang, C. Yao, J. Shen, et al., A new method to design eutectic high-entropy alloys by determining the formation of single-phase solid solution and calculating solidification paths, Mater. Sci. Eng. A, 830(2022), art. No. 142325. doi: 10.1016/j.msea.2021.142325
    [30]
    L. Wang, Y.N. Su, C.L. Yao, et al., Microstructure and mechanical property of novel NiAl-based hypoeutectic/eutectic/hypereutectic high-entropy alloy, Intermetallics, 143(2022), art. No. 107476. doi: 10.1016/j.intermet.2022.107476
    [31]
    Z.S. Yang, Z.J. Wang, Q.F. Wu, et al., Enhancing the mechanical properties of casting eutectic high entropy alloys with Mo addition, Appl. Phys. A, 125(2019), No. 3, art. No. 208. doi: 10.1007/s00339-019-2506-z
    [32]
    X.H. Chen, W.Y. Xie, J. Zhu, et al., Influences of Ti additions on the microstructure and tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy, Intermetallics, 128(2021), art. No. 107024. doi: 10.1016/j.intermet.2020.107024
    [33]
    Q.F. Wu, Z.J. Wang, T. Zheng, et al., A casting eutectic high entropy alloy with superior strength-ductility combination, Mater. Lett., 253(2019), p. 268. doi: 10.1016/j.matlet.2019.06.067
    [34]
    Q.F. Wu, F. He, J.J. Li, H.S. Kim, Z.J. Wang, and J.C. Wang, Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile, Nat. Commun., 13(2022), No. 1, art. No. 4697. doi: 10.1038/s41467-022-32444-4
    [35]
    Y. Dong and Y.P. Lu, Effects of tungsten addition on the microstructure and mechanical properties of near-eutectic AlCoCrFeNi2 high-entropy alloy, J. Mater. Eng. Perform., 27(2018), No. 1, p. 109. doi: 10.1007/s11665-017-3096-6
    [36]
    N. Malatji, T. Lengopeng, S. Pityana, and A.P.I. Popoola, Microstructural, mechanical and electrochemical properties of AlCrFeCuNiW x high entropy alloys, J. Mater. Res. Technol., 11(2021), p. 1594. doi: 10.1016/j.jmrt.2021.01.103
    [37]
    X. Yang, L. Feng, T. Liu, R.R. Chen, G. Qin, and S.P. Wu, Tensile properties and strengthening mechanisms of eutectic high-entropy alloys induced by heterostructure, Mater. Charact., 208(2024), art. No. 113464. doi: 10.1016/j.matchar.2023.113464
    [38]
    A. Takeuchi and A. Inoue, Quantitative evaluation of critical cooling rate for metallic glasses, Mater. Sci. Eng. A, 304-306(2001), p. 446. doi: 10.1016/S0921-5093(00)01446-5
    [39]
    V. Soni, O.N. Senkov, B. Gwalani, D.B. Miracle, and R. Banerjee, Microstructural design for improving ductility of an initially brittle refractory high entropy alloy, Sci. Rep., 8(2018), No. 1, art. No. 8816. doi: 10.1038/s41598-018-27144-3
    [40]
    K.S. Ming, X.F. Bi, and J. Wang, Strength and ductility of CrFeCoNiMo alloy with hierarchical microstructures, Int. J. Plast., 113(2019), p. 255. doi: 10.1016/j.ijplas.2018.10.005
    [41]
    R.R. Chen, G. Qin, H.T. Zheng, et al., Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility, Acta Mater., 144(2018), p. 129. doi: 10.1016/j.actamat.2017.10.058
    [42]
    S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109(2011), No. 10, p. 103505. doi: 10.1063/1.3587228
    [43]
    H. Jiang, L. Jiang, K.M. Han, et al., Effects of tungsten on microstructure and mechanical properties of CrFeNiV0.5W x and CrFeNi2V0.5W x high-entropy alloys, J. Mater. Eng. Perform., 24(2015), No. 12, p. 4594. doi: 10.1007/s11665-015-1767-8
    [44]
    B. Chanda, G. Potnis, P.P. Jana, and J. Das, A review on nano-/ ultrafine advanced eutectic alloys, J. Alloys Compd., 827(2020), art. No. 154226. doi: 10.1016/j.jallcom.2020.154226
    [45]
    X. Jin, J. Bi, L. Zhang, et al., A new CrFeNi2Al eutectic high entropy alloy system with excellent mechanical properties, J. Alloys Compd., 770(2019), p. 655. doi: 10.1016/j.jallcom.2018.08.176
    [46]
    X. Jin, Y. Zhou, L. Zhang, X.Y. Du, and B.S. Li, A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration, Mater. Des., 143(2018), p. 49. doi: 10.1016/j.matdes.2018.01.057
    [47]
    L.L. Ma, J.N. Wang, Z.H. Lai, Z.C. Wu, B.T. Yang, and P.P. Zhao, Microstructure and mechanical property of Al56− xCo24Cr20Ni eutectic high-entropy alloys with an ordered FCC/BCT phase structure, J. Alloys Compd., 936(2023), art. No. 168194. doi: 10.1016/j.jallcom.2022.168194
    [48]
    X. Jin, Y.X. Liang, J. Bi, and B.S. Li, Enhanced strength and ductility of Al0.9CoCrNi2.1 eutectic high entropy alloy by thermomechanical processing, Materialia, 10(2020), art. No. 100639. doi: 10.1016/j.mtla.2020.100639
    [49]
    Q.W. Tian, G.J. Zhang, K.X. Yin, W.L. Cheng, Y.N. Wang, and J.C. Huang, Effect of Ni content on the phase formation, tensile properties and deformation mechanisms of the Ni-rich AlCoCrFeNi x (x = 2, 3, 4) high entropy alloys, Mater. Charact., 176(2021), art. No. 111148. doi: 10.1016/j.matchar.2021.111148
    [50]
    X.X. Liu, S.G. Ma, W.D. Song, D. Zhao, and Z.H. Wang, Microstructure evolution and mechanical response of Co-free Ni2CrFeAl0.3Ti x high-entropy alloys, J. Alloys Compd., 931(2023), art. No. 167523. doi: 10.1016/j.jallcom.2022.167523
    [51]
    I. Basu, V. Ocelík, and J.Th.M. de Hosson, BCC–FCC interfacial effects on plasticity and strengthening mechanisms in high entropy alloys, Acta Mater., 157(2018), p. 83. doi: 10.1016/j.actamat.2018.07.031
    [52]
    C.X. Huang, Y.F. Wang, X.L. Ma, et al., Interface affected zone for optimal strength and ductility in heterogeneous laminate, Mater. Today, 21(2018), No. 7, p. 713. doi: 10.1016/j.mattod.2018.03.006
    [53]
    Y.T. Zhu and X.L. Wu, Perspective on hetero-deformation induced (HDI) hardening and back stress, Mater. Res. Lett., 7(2019), No. 10, p. 393. doi: 10.1080/21663831.2019.1616331
    [54]
    P.J. Shi, Y.B. Zhong, Y. Li, et al., Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys, Mater. Today, 41(2020), p. 62. doi: 10.1016/j.mattod.2020.09.029
    [55]
    D.H. Chung, J. Lee, Q.F. He, et al., Hetero-deformation promoted strengthening and toughening in BCC rich eutectic and near eutectic high entropy alloys, J. Mater. Sci. Technol., 146(2023), p. 1. doi: 10.1016/j.jmst.2022.10.036
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(670) PDF Downloads(32) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return