Cite this article as: |
Tongyue Li, Ziliang Xie, Wenjiao Zhou, Huan Tong, Dawen Yang, Anjia Zhang, Yuan Wu, and Xiping Song, Study on the hydrogen absorption properties of a YGdTbDyHo rare-earth high-entropy alloy, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 127-135. https://doi.org/10.1007/s12613-024-2933-5 |
Yuan Wu E-mail: wuyuan@ustb.edu.cn
Xiping Song E-mail: xpsong@skl.ustb.edu.cn
[1] |
J.W. Yeh, S.K. Chen, S.J. Lin, et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
|
[2] |
Y. Zhang and Y.J. Zhou, Solid solution formation criteria for high entropy alloys, Mater. Sci. Forum, 561-565(2007), p. 1337. doi: 10.4028/www.scientific.net/MSF.561-565.1337
|
[3] |
C.W. Tsai, M.H. Tsai, J.W. Yeh, and C.C. Yang, Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy, J. Alloys Compd., 490(2010), No. 1-2, p. 160. doi: 10.1016/j.jallcom.2009.10.088
|
[4] |
S.G. Ma and Y. Zhang, Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy, Mater. Sci. Eng. A, 532(2012), p. 480. doi: 10.1016/j.msea.2011.10.110
|
[5] |
Y.Y. Chen, U.T. Hong, H.C. Shih, J.W. Yeh, and T. Duval, Electrochemical kinetics of the high entropy alloys in aqueous environments—A comparison with type 304 stainless steel, Corros. Sci., 47(2005), No. 11, p. 2679. doi: 10.1016/j.corsci.2004.09.026
|
[6] |
T. Zhong, H.Y. Zhang, M.C. Song, et al., FeCoNiCrMo high entropy alloy nanosheets catalyzed magnesium hydride for solid-state hydrogen storage, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2270. doi: 10.1007/s12613-023-2669-7
|
[7] |
L. Wang, L.T. Zhang, X. Lu, et al., Surprising cocktail effect in high entropy alloys on catalyzing magnesium hydride for solid-state hydrogen storage, Chem. Eng. J., 465(2023), art. No. 142766. doi: 10.1016/j.cej.2023.142766
|
[8] |
S. Li, F.Y. Wu, Y. Zhang, et al., Enhanced hydrogen storage performance of magnesium hydride catalyzed by medium-entropy alloy CrCoNi nanosheets, Int. J. Hydrogen Energy, 50(2024), p. 1015. doi: 10.1016/j.ijhydene.2023.08.308
|
[9] |
F. Marques, M. Balcerzak, F. Winkelmann, G. Zepon, and M. Felderhoff, Review and outlook on high-entropy alloys for hydrogen storage, Energy Environ. Sci., 14(2021), No. 10, p. 5191. doi: 10.1039/D1EE01543E
|
[10] |
M. Sahlberg, D. Karlsson, C. Zlotea, and U. Jansson, Superior hydrogen storage in high entropy alloys, Sci. Rep., 6(2016), art. No. 36770. doi: 10.1038/srep36770
|
[11] |
C. Zlotea, M.A. Sow, G. Ek, et al., Hydrogen sorption in TiZrNbHfTa high entropy alloy, J. Alloys Compd., 775(2019), p. 667. doi: 10.1016/j.jallcom.2018.10.108
|
[12] |
C. Zhang, A.N. Song, Y. Yuan, et al., Study on the hydrogen storage properties of a TiZrNbTa high entropy alloy, Int. J. Hydrogen Energy, 45(2020), No. 8, p. 5367. doi: 10.1016/j.ijhydene.2019.05.214
|
[13] |
M.D.B. Ferraz, W.J. Botta, and G. Zepon, Synthesis, characterization and first hydrogen absorption/desorption of the Mg35Al15Ti25V10Zn15 high entropy alloy, Int. J. Hydrogen Energy, 47(2022), No. 54, p. 22881. doi: 10.1016/j.ijhydene.2022.05.098
|
[14] |
R. Soler, A. Evirgen, M. Yao, et al., Microstructural and mechanical characterization of an equiatomic YGdTbDyHo high entropy alloy with hexagonal close-packed structure, Acta Mater., 156(2018), p. 86. doi: 10.1016/j.actamat.2018.06.010
|
[15] |
S. Vrtnik, J. Lužnik, P. Koželj, et al., Disordered ferromagnetic state in the Ce–Gd–Tb–Dy–Ho hexagonal high-entropy alloy, J. Alloys Compd., 742(2018), p. 877. doi: 10.1016/j.jallcom.2018.01.331
|
[16] |
Y. Yuan, Y. Wu, X. Tong, et al., Rare-earth high-entropy alloys with giant magnetocaloric effect, Acta Mater., 125(2017), p. 481. doi: 10.1016/j.actamat.2016.12.021
|
[17] |
A. Khawam and D.R. Flanagan, Solid-state kinetic models: Basics and mathematical fundamentals, J. Phys. Chem. B, 110(2006), No. 35, p. 17315. doi: 10.1021/jp062746a
|
[18] |
A. Jelen, J.H. Jang, J. Oh, et al., Nanostructure and local polymorphism in “ideal-like” rare-earths-based high-entropy alloys, Mater. Charact., 172(2021), art. No. 110837. doi: 10.1016/j.matchar.2020.110837
|
[19] |
K. Fu, G.L. Li, J.G. Li, Y. Liu, W.H. Tian, and X.G. Li, Experimental study and thermodynamic assessment of the dysprosium-hydrogen binary system, J. Alloys Compd., 696(2017), p. 60. doi: 10.1016/j.jallcom.2016.11.182
|
[20] |
S.F. Lu, L. Ma, G.H. Rao, et al., Magnetocaloric effect of high-entropy rare-earth alloy GdTbHoErY, J. Mater. Sci. Mater. Electron., 32(2021), No. 8, p. 10919. doi: 10.1007/s10854-021-05749-1
|
[21] |
S.F. Lu, L. Ma, J. Wang, et al., Effect of configuration entropy on magnetocaloric effect of rare earth high-entropy alloy, J. Alloys Compd., 874(2021), art. No. 159918. doi: 10.1016/j.jallcom.2021.159918
|
[22] |
M. Krnel, S. Vrtnik, A. Jelen, et al., Speromagnetism and asperomagnetism as the ground states of the Tb–Dy–Ho–Er–Tm “ideal” high-entropy alloy, Intermetallics, 117(2020), art. No. 106680. doi: 10.1016/j.intermet.2019.106680
|
[23] |
V.V. Burnasheva, E.E. Fokina, V.N. Fokin, S.L. Troitskaya, and K.N. Semenenko, Formation of scandium and yttrium hydrides in the presence of intermetallic ScFe1.74 and YFe2 compounds, Russ. J. Inorg. Chem., 29(1984), No. 6, p. 1379.
|
[24] |
M. Ellner, H. Reule, and E.J. Mittemeijer, Unit cell parameters and densities of the gadolinium dihydride GdH2+ x, J. Alloys Compd., 279(1998), No. 2, p. 179. doi: 10.1016/S0925-8388(98)00681-1
|
[25] |
A. Pebler and W.E. Wallace, Crystal structures of some lanthanide hydrides1, J. Phys. Chem., 66(1962), No. 1, p. 148. doi: 10.1021/j100807a033
|
[26] |
J.E. Bonnet and J.N. Daou, Rare‐earth dihydride compounds: Lattice thermal expansion and investigation of the thermal dissociation, J. Appl. Phys., 48(1977), No. 3, p. 964. doi: 10.1063/1.323717
|
[27] |
N. Zapp, D. Sheptyakov, A. Franz, and H. Kohlmann, HoHO: A paramagnetic air-resistant ionic hydride with ordered anions, Inorg. Chem., 60(2021), No. 6, p. 3972. doi: 10.1021/acs.inorgchem.0c03822
|
[28] |
D.G. Westlake, Hydrides of intermetallic compounds: A review of stabilities, stoichiometries and preferred hydrogen sites, J. Less Common Met., 91(1983), No. 1, p. 1. doi: 10.1016/0022-5088(83)90091-7
|
[29] |
Z.J. Wang, C.T. Liu, and P. Dou, Thermodynamics of vacancies and clusters in high-entropy alloys, Phys. Rev. Mater., 1(2017), No. 4, art. No. 043601. doi: 10.1103/PhysRevMaterials.1.043601
|
[30] |
R. Floriano, G. Zepon, K. Edalati, et al., Hydrogen storage in TiZrNbFeNi high entropy alloys, designed by thermodynamic calculations, Int. J. Hydrogen Energy, 45(2020), No. 58, p. 33759. doi: 10.1016/j.ijhydene.2020.09.047
|
[31] |
R. Floriano, G. Zepon, K. Edalati, et al., Hydrogen storage properties of new A3B2-type TiZrNbCrFe high-entropy alloy, Int. J. Hydrogen Energy, 46(2021), No. 46, p. 23757. doi: 10.1016/j.ijhydene.2021.04.181
|
[32] |
K.R. Cardoso, V. Roche, A.M. Jorge Jr, F.J. Antiqueira, G. Zepon, and Y. Champion, Hydrogen storage in MgAlTiFeNi high entropy alloy, J. Alloys Compd., 858(2021), art. No. 158357. doi: 10.1016/j.jallcom.2020.158357
|