Cite this article as: |
Feng Zhang, Chenyang Zhang, Linlin Wu, Wei Sun, Hongliang Zhang, Jianhua Chen, Yong Pei, and Songjiang Li, Depression mechanism of sulfite ions on sphalerite and Pb2+ activated sphalerite in the flotation separation of galena from sphalerite, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2936-2 |
Chenyang Zhang E-mail: zhangchenyang@csu.edu.cn
Linlin Wu E-mail: minengine@163.com
Songjiang Li E-mail: chemwll@csu.edu.cn
[1] |
C. Xue and Z.C. Wei, Reaction mechanism and research progress of depressants in sphalerite flotation, Multipurp. Util. Miner. Resour., (2017), No. 3, p. 38.
|
[2] |
T.S. Qiu, Q.M. Nie, Y.Q. He, and Q.Z. Yuan, Density functional theory study of cyanide adsorption on the sphalerite (1 1 0) surface, Appl. Surf. Sci., 465(2019), p. 678. doi: 10.1016/j.apsusc.2018.09.020
|
[3] |
B. Guo, Y.J. Peng, and R. Espinosa-Gomez, Cyanide chemistry and its effect on mineral flotation, Miner. Eng., 66-68(2014), p. 25. doi: 10.1016/j.mineng.2014.06.010
|
[4] |
Y.F. Mu, Y.J. Peng, and R.A. Lauten, The depression of pyrite in selective flotation by different reagent systems–A Literature review, Miner. Eng., 96-97(2016), p. 143. doi: 10.1016/j.mineng.2016.06.018
|
[5] |
T.H. Pak, T.C. Sun, C.Y. Xu, and Y.H. Jo, Flotation and surface modification characteristics of galena, sphalerite and pyrite in collecting-depressing-reactivating system, J. Cent. South Univ., 19(2012), No. 6, p. 1702. doi: 10.1007/s11771-012-1196-x
|
[6] |
P. Clarke, P. Arora, D. Fornasiero, J. Ralston, and R.S.C. Smart, Separation of chalcopyrite or galena from sphalerite: A flotation and X-ray photoelectron spectroscopic study, [in] S.P. Mehrotra, ed., Mineral Processing : Recent Advances and Future Trends, Allied Publishers Limited New Delhi, New Delhi, 1995, p. 369.
|
[7] |
S.G. Malghan, Role of sodium sulfide in the flotation of oxidized copper, lead, and zinc ores, Min. Metall. Explor., 3(1986), No. 3, p. 158.
|
[8] |
V.A. Bocharov, V.A. Ignatkina, and A.A. Kayumov, Rational separation of complex copper–zinc concentrates of sulfide ore, J. Min. Sci., 52(2016), No. 4, p. 793. doi: 10.1134/S1062739116041202
|
[9] |
E. E. Öz, Evaluation of Kosovo-Artana Concentrator Tailings [Dissertation], Middle East Technical University, Ankara, 2011.
|
[10] |
L.M. Zhang, J.D. Gao, S.A. Khoso, et al., A reagent scheme for galena/sphalerite flotation separation: Insights from first-principles calculations, Miner. Eng., 167(2021), art. No. 106885. doi: 10.1016/j.mineng.2021.106885
|
[11] |
T.N. Khmeleva, J.K. Chapelet, W.M. Skinner, and D.A. Beattie, Depression mechanisms of sodium bisulphite in the xanthate-induced flotation of copper activated sphalerite, Int. J. Miner. Process., 79(2006), No. 1, p. 61. doi: 10.1016/j.minpro.2005.12.001
|
[12] |
T.N. Khmeleva, W. Skinner, and D.A. Beattie, Depressing mechanisms of sodium bisulphite in the collectorless flotation of copper-activated sphalerite, Int. J. Miner. Process., 76(2005), No. 1, p. 43.
|
[13] |
W.Z. Shen, D. Fornasiero, and J. Ralston, Flotation of sphalerite and pyrite in the presence of sodium sulfite, Int. J. Miner. Process., 63(2001), No. 1, p. 17. doi: 10.1016/S0301-7516(00)00067-3
|
[14] |
T.N. Khmeleva, W. Skinner, D.A. Beattie, and T.V. Georgiev, The effect of sulphite on the xanthate-induced flotation of copper-activated pyrite, Physicochem. Probl. Miner. Process., 36(2002), p. 185.
|
[15] |
S.R. Grano, C.A. Prestidge, and J. Ralston, Sulphite modification of galena surfaces and its effect on flotation and xanthate adsorption, Int. J. Miner. Process., 52(1997), No. 1, p. 1. doi: 10.1016/S0301-7516(97)00049-5
|
[16] |
J. Gustafsson, Visual MINTEQ Rev. 3.1, 2007.
|
[17] |
Z.C. Pan, Z.C. Liu, J.J. Xiong, et al., Application and depression mechanism of sodium sulfite on galena–pyrite mixed concentrate flotation separation: Huize lead–zinc mine, China, as an example, Miner. Eng., 185(2022), art. No. 107696. doi: 10.1016/j.mineng.2022.107696
|
[18] |
M.D. Segall, P.J.D. Lindan, M.J. Probert, et al., First-principles simulation: Ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter, 14(2002), No. 11, p. 2717. doi: 10.1088/0953-8984/14/11/301
|
[19] |
J.P. Perdew, K. Burke, and Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B: Condens. Matter, 54(1996), No. 23, p. 16533. doi: 10.1103/PhysRevB.54.16533
|
[20] |
Y.J. Luo, L.M. Ou, J.H. Chen, et al., Hydration mechanisms of smithsonite from DFT-D calculations and MD simulations, Int. J. Min. Sci. Technol., 32(2022), No. 3, p. 605. doi: 10.1016/j.ijmst.2022.01.009
|
[21] |
T. Bučko, S. Lebègue, J. Hafner, and J.G. Ángyán, Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids, Phys. Rev. B, 87(2013), No. 6, art. No. 064110. doi: 10.1103/PhysRevB.87.064110
|
[22] |
K. Wright, G.W. Watson, S.C. Parker, and D.J. Vaughan, Simulation of the structure and stability of sphalerite (ZnS) surfaces, Am. Mineral., 83(1998), No. 1-2, p. 141. doi: 10.2138/am-1998-1-214
|
[23] |
J.H. Chen, Y. Chen, and Y.Q. Li, Effect of vacancy defects on electronic properties and activation of sphalerite (110) surface by first-principles, Trans. Nonferrous Met. Soc. China, 20(2010), No. 3, p. 502. doi: 10.1016/S1003-6326(09)60169-2
|
[24] |
H.M. Steele, K. Wright, and I.H. Hillier, A quantum-mechanical study of the (110) surface of sphalerite (ZnS) and its interaction with Pb2+ species, Phys. Chem. Miner., 30(2003), No. 2, p. 69. doi: 10.1007/s00269-002-0296-9
|
[25] |
J.H. Chen, X.H. Long, and Y. Chen, Comparison of multilayer water adsorption on the hydrophobic galena (PbS) and hydrophilic pyrite (FeS2) surfaces: A DFT study, J. Phys. Chem. C, 118(2014), No. 22, p. 11657. doi: 10.1021/jp5000478
|
[26] |
J.A. Tossell and D.J. Vaughan, Electronic structure and the chemical reactivity of the surface of galena, Can. Mineral., 25(1987), No. 3, p. 381.
|
[27] |
H.L. Zhang, W. Sun, C.Y. Zhang, J.Y. He, D.X. Chen, and Y.G. Zhu, Adsorption performance and mechanism of the commonly used collectors with oxygen-containing functional group on the ilmenite surface: A DFT study, J. Mol. Liq., 346(2022), art. No. 117829. doi: 10.1016/j.molliq.2021.117829
|
[28] |
H.L. Zhang, W. Sun, Y.G. Zhu, J.Y. He, D.X. Chen, and C.Y. Zhang, Effects of the goethite surface hydration microstructure on the adsorption of the collectors dodecylamine and sodium oleate, Langmuir, 37(2021), No. 33, p. 10052. doi: 10.1021/acs.langmuir.1c01265
|
[29] |
C.C. Sui, D. Lee, A. Casuge, and J.A. Finch, Comparison of the activation of sphalerite by copper and lead, Min. Metall. Explor., 16(1999), No. 3, p. 53. [30] A.R. Gerson, A.G. Lange, K.E. Prince, and R.S.C. Smart, The mechanism of copper activation of sphalerite, Appl. Surf. Sci., 137(1999), No. 1-4, p. 207.
|
[30] |
G.S. Reddy and C.K. Reddy, The chemistry of activation of sphalerite–A review, Miner. Process. Extr. Metall. Rev., 4(1988), No. 1-2, p. 1. doi: 10.1080/08827508808952632
|
[31] |
J. Liu, M. Ejtemaei, A.V. Nguyen, S.M. Wen, and Y. Zeng, Surface chemistry of Pb-activated sphalerite, Miner. Eng., 145(2020), art. No. 106058. doi: 10.1016/j.mineng.2019.106058
|
[32] |
Z.Y. Zhang, S. Liu, F.Y. Liu, M. Mohamed Mohamed Ahmed, X.Y. Qu, and G.Y. Liu, The flotation separation of sphalerite from pyrite through a novel flotation reagent system of FeCl3–CuSO4-aminotriazolethione, J. Mol. Liq., 345(2022), art. No. 116997. doi: 10.1016/j.molliq.2021.116997
|
[33] |
B. Jańczuk, W. Wójcik, A. Zdziennicka, and F. González-Caballero, Components of surface free energy of galena, J. Mater. Sci., 27(1992), No. 23, p. 6447. doi: 10.1007/BF00576297
|
[34] |
R. Woods, C.I. Basilio, D.S. Kim, and R.H. Yoon, Chemisorption of ethyl xanthate on copper electrodes, Int. J. Miner. Process., 42(1994), No. 3-4, p. 215. doi: 10.1016/0301-7516(94)90014-0
|
[35] |
Z. Wang, Y.L. Qian, L.H. Xu, B. Dai, J.H. Xiao, and K.B. Fu, Selective chalcopyrite flotation from pyrite with glycerine–xanthate as depressant, Miner. Eng., 74(2015), p. 86. doi: 10.1016/j.mineng.2015.01.008
|
[36] |
T. Yamamoto, Mechanism of pyrite depression by sulfite in the presence of sphalerite, Complex Sulphide Ores, (1980).
|
[37] |
S.R. Grano, C.A. Prestidge, and J. Ralston, Solution interaction of ethyl xanthate and sulphite and its effect on galena flotation and xanthate adsorption, Int. J. Miner. Process., 52(1997), No. 2-3, p. 161. doi: 10.1016/S0301-7516(97)00066-5
|
[38] |
Y.H. Zhang, Z. Cao, Y.D. Cao, and C.Y. Sun, FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces, J. Mol. Struct., 1048(2013), p. 434. doi: 10.1016/j.molstruc.2013.06.015
|
[39] |
W.X. Huang, R.H. Liu, F. Jiang, H.H. Tang, L. Wang, and W. Sun, Adsorption mechanism of 3-mercaptopropionic acid as a chalcopyrite depressant in chalcopyrite and galena separation flotation, Colloids Surf. A, 641(2022), art. No. 128063. doi: 10.1016/j.colsurfa.2021.128063
|
[40] |
Z.B. Deng, W.L. Cheng, Y. Tang, X. Tong, and Z.H. Liu, Adsorption mechanism of copper xanthate on pyrite surfaces, Physicochem. Probl. Miner. Process., 57(2021), No. 3, p. 46. doi: 10.37190/ppmp/135131
|
[41] |
K.L. Zhao, W. Yan, X.H. Wang, B. Hui, G.H. Gu, and H. Wang, The flotation separation of pyrite from pyrophyllite using oxidized guar gum as depressant, Int. J. Miner. Process., 161(2017), p. 78. doi: 10.1016/j.minpro.2017.02.015
|
[42] |
U. Becker and M.F. Hochella, The calculation of STM images, STS spectra, and XPS peak shifts for galena: New tools for understanding mineral surface chemistry, Geochim. Cosmochim. Acta, 60(1996), No. 13, p. 2413. doi: 10.1016/0016-7037(96)00094-4
|
[43] |
H.Y. Xie, Y.H. Liu, B. Rao, et al., Selective passivation behavior of galena surface by sulfuric acid and a novel flotation separation method for copper–lead sulfide ore without collector and inhibitor, Sep. Purif. Technol., 267(2021), art. No. 118621. doi: 10.1016/j.seppur.2021.118621
|
[44] |
S. Yagi, M. Nambu, C. Tsukada, et al., Spectral studies on sulfur poisoning of Pd/Mg6Ni by NEXAFS and XPS, Appl. Surf. Sci., 267(2013), p. 45. doi: 10.1016/j.apsusc.2012.05.098
|
[45] |
F. Zhang, W. Sun, H.L. Zhang, et al., Selective adsorption mechanism of zinc ions on the surfaces of galena and sphalerite in the flotation separation of Pb–Zn, JOM, 75(2023), No. 11, p. 4808. doi: 10.1007/s11837-023-06098-6
|