Peng Li, Meifeng Cai, Shengjun Miao, Yuan Li, and Yu Wang, Correlation between the rock mass properties and maximum horizontal stress: A case study of overcoring stress measurements, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 39-48. https://doi.org/10.1007/s12613-024-2944-2
Cite this article as:
Peng Li, Meifeng Cai, Shengjun Miao, Yuan Li, and Yu Wang, Correlation between the rock mass properties and maximum horizontal stress: A case study of overcoring stress measurements, Int. J. Miner. Metall. Mater., 32(2025), No. 1, pp. 39-48. https://doi.org/10.1007/s12613-024-2944-2
Research Article

Correlation between the rock mass properties and maximum horizontal stress: A case study of overcoring stress measurements

+ Author Affiliations
  • Corresponding authors:

    Peng Li    E-mail: pengli@ustb.edu.cn

    Shengjun Miao    E-mail: miaoshengjun@ustb.edu.cn

  • Received: 29 January 2024Revised: 22 May 2024Accepted: 27 May 2024Available online: 28 May 2024
  • Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude. To investigate the correlation between the rock mass properties and maximum horizontal stress, the three-dimensional (3D) stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted, a newly defined characteristic parameter CERP was proposed as an indicator for evaluating the structural properties of rock masses, and a fuzzy relation matrix was established using the information distribution method. The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth. There is no remarkable correlation between the elastic modulus, Poisson’s ratio and depth, and the distribution of data points is scattered and messy. Moreover, there is no obvious relationship between the rock quality designation (RQD) and depth. The maximum horizontal stress σH is a function of rock properties, showing a certain linear relationship with the CERP at the same depth. In addition, the overall change trend of σH determined by the established fuzzy identification method is to increase with the increase of CERP. The fuzzy identification method also demonstrates a relatively detailed local relationship between σH and CERP, and the predicted curve rises in a fluctuating way, which is in accord well with the measured stress data.
  • loading
  • Supplementary Information-s12613-024-2944-2.docx
  • [1]
    M.L. Zoback, First- and second-order patterns of stress in the lithosphere: The World Stress Map Project, J. Geophys. Res., 97(1992), No. B8, p. 11703. doi: 10.1029/92JB00132
    [2]
    A. Zang and O. Stephansson, Stress Field of the Earth ’s Crust, Springer Dordrecht, 2010.
    [3]
    P. Li, M.F. Cai, S.J. Miao, and Q.F. Guo, New insights into the current stress field around the yishu fault zone, Eastern China, Rock Mech. Rock Eng., 52(2019), No. 10, p. 4133. doi: 10.1007/s00603-019-01792-x
    [4]
    P. Li and M.F. Cai, Insights into seismicity from the perspective of the crustal stress field: A comment, Nat. Hazards, 111(2022), No. 2, p. 1153. doi: 10.1007/s11069-021-05124-7
    [5]
    P. Li, M.F. Cai, M. Gorjian, F.H. Ren, X. Xi, and P.T. Wang, Interaction between in situ stress states and tectonic faults: A comment, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1227. doi: 10.1007/s12613-023-2607-8
    [6]
    P. Li and M.F. Cai, Assessing the role of absolute stress measurement and relative stress real-time monitoring for earthquake research, Arab. J. Geosci., 15(2022), No. 9, art. No. 831. doi: 10.1007/s12517-022-10135-0
    [7]
    M.D. Zoback, R. Apel, J. Baumgärtner, et al., Upper-crustal strength inferred from stress measurements to 6 km depth in the KTB borehole, Nature, 365(1993), p. 633. doi: 10.1038/365633a0
    [8]
    M.L. Zoback, M.D. Zoback, J. Adams, et al., Global patterns of tectonic stress, Nature, 341(1989), No. 6240, p. 291. doi: 10.1038/341291a0
    [9]
    P. Li, M.F. Cai, Q.F. Guo, and S.J. Miao, In situ stress state of the northwest region of the Jiaodong peninsula, China from overcoring stress measurements in three gold mines, Rock Mech. Rock Eng., 52(2019), No. 11, p. 4497. doi: 10.1007/s00603-019-01827-3
    [10]
    Q.Q. Zhu, D.Y. Li, Z.Y. Han, P. Xiao, and B. Li, Failure characteristics of brittle rock containing two rectangular holes under uniaxial compression and coupled static-dynamic loads, Acta Geotech., 17(2022), No. 1, p. 131. doi: 10.1007/s11440-021-01196-8
    [11]
    M. Rajabi, M. Tingay, and O. Heidbach, The present-day state of tectonic stress in the Darling Basin, Australia: Implications for exploration and production, Mar. Pet. Geol., 77(2016), p. 776. doi: 10.1016/j.marpetgeo.2016.07.021
    [12]
    S.F. Wang, X.B. Li, J.R. Yao, et al., Experimental investigation of rock breakage by a conical pick and its application to non-explosive mechanized mining in deep hard rock, Int. J. Rock Mech. Min. Sci., 122(2019), art. No. 104063. doi: 10.1016/j.ijrmms.2019.104063
    [13]
    S.F. Wang, L.Q. Huang, and X.B. Li, Analysis of rockburst triggered by hard rock fragmentation using a conical pick under high uniaxial stress, Tunnelling Underground Space Technol., 96(2020), art. No. 103195. doi: 10.1016/j.tust.2019.103195
    [14]
    T. Wang, W.W. Ye, Y.M. Tong, N.S. Jiang, and L.Y. Liu, Residual stress measurement and analysis of siliceous slate-containing quartz veins, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2310. doi: 10.1007/s12613-023-2667-9
    [15]
    T. Wang, W.W. Ye, L.Y. Liu, K. Liu, N.S. Jiang, and X.H. Feng, Disturbance failure mechanism of highly stressed rock in deep excavation: Current status and prospects, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 611. doi: 10.1007/s12613-024-2864-1
    [16]
    P. Li, Q.F. Guo, M.F. Cai, and S.J. Miao, Present-day state of tectonic stress and tectonization in coastal gold mine area near Laizhou Gulf, North China, Trans. Nonferrous Met. Soc. China, 33(2023), No. 3, p. 865. doi: 10.1016/S1003-6326(23)66152-7
    [17]
    B. Amadei and O. Stephansson, Rock Stress and Its Measurement, Springer Dordrecht, 1997.
    [18]
    M. Rajabi, M. Tingay, O. Heidbach, R. Hillis, and S. Reynolds, The present-day stress field of Australia, Earth Sci. Rev., 168(2017), p. 165. doi: 10.1016/j.earscirev.2017.04.003
    [19]
    M.D. Zoback, Reservoir Geomechanics, Cambridge University Press, Cambridge, 2007.
    [20]
    P.R. Sheorey, G. Murali Mohan, and A. Sinha, Influence of elastic constants on the horizontal in situ stress, Int. J. Rock Mech. Min. Sci., 38(2001), No. 8, p. 1211. doi: 10.1016/S1365-1609(01)00069-7
    [21]
    P. Li and M.F. Cai, Distribution law of in situ stress field and regional stress field assessments in the Jiaodong Peninsula, China, J. Asian Earth Sci., 166(2018), p. 66. doi: 10.1016/j.jseaes.2018.07.021
    [22]
    J. Sjöberg, R. Christiansson, and J.A. Hudson, ISRM suggested methods for rock stress estimation: Part 2: Overcoring methods, Int. J. Rock Mech. Min. Sci., 40(2003), No. 7-8, p. 999. doi: 10.1016/j.ijrmms.2003.07.012
    [23]
    P. Li, J.L. Sun, M.F. Cai, et al., Current tectonic stress state in an iron mine district, North China, based on overcoring, hydraulic fracturing, and acoustic emission stress measurements, Lithosphere, 2022(2022), No. 1, art. No. 3251234. doi: 10.2113/2022/3251234
    [24]
    M.F. Cai, Principles and Techniques of In-Situ Stress Measurements, Science Press, Beijing, 1995.
    [25]
    M.F. Cai, L. Qiao, C.H. Li, B. Yu, and G.P. Chen, Application of an improved hollow inclusion technique for in situ stress measurement in Xincheng gold mine, China, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 32(1995), No. 7, p. 735. doi: 10.1016/0148-9062(95)00020-H
    [26]
    M.F. Cai and S.H. Wang, Results and their analysis of in-site earth stress measurement in lianglong gold mine, China Min. Mag., 9(2000), No. 5, , p. 46.
    [27]
    Q.F. Guo and D. Ji, Study on measuring and test technology of ground stress field in No.10 mine of Pingdingshan coal mining group, Coal Sci. Technol., 40(2012), No. 2, p. 12.
    [28]
    S.J. Miao, J.J. Shi, Y. Li, and H.B. Liu, In-situ stress measurement and result analysis in the 8th mine of Pingmei Group, China, [in] 2011 International Conference on Remote Sensing , Environment and Transportation Engineering, Nanjing, 2011, p. 425.
    [29]
    Y.Y. Hu, Study on In-Situ Stress Measurement and Stope Ground Pressure Activity Law in Lilou Iron Mine [Dissertation], University of Science and Technology Beijing, Beijing, 2018.
    [30]
    M.F. Cai, B. Yu, L. Qiao, G.P. Chen, and C.H. Li, Experience of in situ stress measurement with hydrofracturing and overcoring techniques in Ekou mine, China, Int. J. Rock Mech. Min. Sci., 34(1997), No. 2, p. 299. doi: 10.1016/S0148-9062(96)00059-9
    [31]
    M.F. Cai, L. Qiao, B. Yu, and H.F. He, Results and analysis of in-situ stress measurement in Meishan iron mine, Chin. J. Rock Mech. Eng., 16(1997), No. 16, p. 233.
    [32]
    Y.C. Li, M.F. Cai, J.A. Wang, and S.J. Miao, In-situ measurement and analysis by stress relaxation method in deep slope rockmass, Met. Mine, 337(2004), No. 7, p. 16.
    [33]
    Y. Li, S.S. Fu, L. Qiao, Z.B. Liu, and Y.H. Zhang, Development of twin temperature compensation and high-level biaxial pressurization calibration techniques for CSIRO in-situ stress measurement in depth, Rock Mech. Rock Eng., 52(2019), No. 4, p. 1115. doi: 10.1007/s00603-018-1618-7
    [34]
    P. Li, M.F. Cai, Q.F. Guo, F.H. Ren, and S.J. Miao, Current stress field and its relationship to tectonism in a coal mining district, central China, for underground coal energy exploration, Energy Rep., 8(2022), p. 5313. doi: 10.1016/j.egyr.2022.04.008
    [35]
    M.F. Cai, W.D. Liu, and Y. Li, In-situ stress measurement at deep position of linglong gold mine and distribution law of in situ stress field in mine area, Chin. J. Rock Mech. Eng., 29(2010), No. 2, p. 227.
    [36]
    P. Li, Q.F. Guo, and M.F. Cai, Contemporary stress field in and around a gold mine area adjacent to the Bohai Sea, China, and its seismological implications, Bull. Eng. Geol. Environ., 81(2022), No. 3, art. No. 86. doi: 10.1007/s10064-022-02593-3
    [37]
    O. Heidbach, M. Tingay, A. Barth, J. Reinecker, D. Kurfeß, and B. Müller, Global crustal stress pattern based on the World Stress Map database release 2008, Tectonophysics, 482(2010), No. 1-4, p. 3. doi: 10.1016/j.tecto.2009.07.023
    [38]
    E.T. Brown and E. Hoek, Trends in relationships between measured in situ stresses and depth, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 15(1978), No. 4, p. 211. doi: 10.1016/0148-9062(78)91227-5
    [39]
    R. Liu, J.Z. Liu, W.L. Zhu, et al. , In situ stress analysis in the Yinggehai Basin, northwestern South China Sea: Implication for the pore pressure–stress coupling process, Mar. Pet. Geol., 77(2016), p. 341. doi: 10.1016/j.marpetgeo.2016.06.008
    [40]
    P. Li, F.H. Ren, M.F. Cai, Q.F. Guo, and S.J. Miao, Present-day stress state and fault stability analysis in the capital area of China constrained by in situ stress measurements and focal mechanism solutions, J. Asian Earth Sci., 185(2019), art. No. 104007. doi: 10.1016/j.jseaes.2019.104007
    [41]
    P. Li, M.F. Cai, Q.F. Guo, and S.J. Miao, Characteristics and implications of stress state in a gold mine in Ludong area, China, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1363. doi: 10.1007/s12613-018-1690-8
    [42]
    B. Singh and R.K. Goel, Chapter 4 – Rock quality designation, [in] B. Singh and R.K. Goel, eds. Engineering Rock Mass Classification, Elsvier, Butterworth-Heinemann; 2011, p. 21.
    [43]
    Z.T. Bieniawski, Engineering Rock Mass Classifications : A Complete Manual for Engineers and Geologists in Mining , Civil , and Petroleum Engineering, John Wiley & Sons, New York, 1989.
    [44]
    S.D. Priest and J.A. Hudson, Discontinuity spacings in rock, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 13(1976), No. 5, p. 135. doi: 10.1016/0148-9062(76)90818-4
    [45]
    A. Palmstrom, Measurements of and correlations between block size and rock quality designation (RQD), Tunn. Undergr. Space Technol., 20(2005), No. 4, p. 362. doi: 10.1016/j.tust.2005.01.005
    [46]
    X.W. Xu and C.F. Huang, Fuzzy identification between dynamic response of structure and structural earthquake damage, Earthquake Eng. Eng. Vibr., 9(1989), No. 2, p. 57.
    [47]
    C.F. Huang and J.D. Wang, Fuzzy Information Optimization Processing Technology and Its Application, Beijing University of Aeronautics and Astronautics Press, Beijing, 1995.
    [48]
    M. Mizumoto and H.J. Zimmermann, Comparison of fuzzy reasoning methods, Fuzzy Sets Syst., 8(1982), No. 3, p. 253. doi: 10.1016/S0165-0114(82)80004-3
    [49]
    L.A. Zadeh, Fuzzy sets and information granularity, [in] G.J. Klir and B. Yuan, eds., Fuzzy Sets , Fuzzy Logic , and Fuzzy Systems, North-Holland Publishing Co., 1979, p. 433.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Share Article

    Article Metrics

    Article Views(259) PDF Downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return