Zhen He, Jiaming Liu, Yuqian Wei, Yunfei Song, Wuxin Yang, Aobo Yang, Yuxin Wang,  and Bo Li, Polypyrrole-coated triple-layer yolk-shell Fe2O3 anode materials with their superior overall performance in lithium-ion batteries, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2954-0
Cite this article as:
Zhen He, Jiaming Liu, Yuqian Wei, Yunfei Song, Wuxin Yang, Aobo Yang, Yuxin Wang,  and Bo Li, Polypyrrole-coated triple-layer yolk-shell Fe2O3 anode materials with their superior overall performance in lithium-ion batteries, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-024-2954-0
Research Article

Polypyrrole-coated triple-layer yolk-shell Fe2O3 anode materials with their superior overall performance in lithium-ion batteries

+ Author Affiliations
  • Corresponding authors:

    Yuxin Wang    E-mail: ywan943@163.com

    Bo Li    E-mail: bli219@aucklanduni.ac.nz

  • Received: 22 February 2024Revised: 31 May 2024Accepted: 6 June 2024Available online: 12 June 2024
  • Iron oxide (Fe2O3) emerges as a highly attractive anode candidate among rapidly expanding energy storage market. Nonetheless, its considerable volume changes during cycling as an electrode material result in a vast reduced battery cycle life. In this work, an approach is pioneered for preparing high-performance Fe2O3 anode materials, by innovatively synthesizing a triple-layer yolk-shell Fe2O3 uniformly coated with a conductive polypyrrole (Ppy) layer (Fe2O3@Ppy-TLY). The uniform polypyrrole coating introduces more reaction sites and adsorption sites, and maintains structure stability through charge-discharge process. In the uses as lithium-ion battery electrodes, Fe2O3@Ppy-TLY demonstrates high reversible specific capacity (maintaining a discharge capacity of 1375.11 mAh·g−1 after 500 cycles at 1 C), exceptional cycling stability (retaining the steady charge-discharge performance at 544.33 mAh·g−1 after 6000 ultrafast charge-discharge cycles at a 10 C current density), and outstanding high current charge-discharge performance (retaining a reversible capacity of 156.75 mAh·g−1 after 10000 cycles at 15 C), thereby exhibiting superior lithium storage performance. This work introduces innovative advancements for Fe2O3 anode design, aiming to enhance its performance in energy storage fields.
  • loading
  • [1]
    J.X. Sun, L.Q. Ye, X.R. Zhao, P.P. Zhang, and J. Yang, Electronic modulation and structural engineering of carbon-based anodes for low-temperature lithium-ion batteries: A review, Molecules, 28(2023), No. 5, art. No. 2108. doi: 10.3390/molecules28052108
    [2]
    P.F. Hu, C.F. Meng, F.G. Li, et al., Hierarchical multi-yolk-shell copper oxide@copper-1,3,5-benzenetricarboxylate as an ultrastable anode for lithium ion batteries, J. Colloid Interface Sci., 617(2022), p. 568. doi: 10.1016/j.jcis.2022.02.134
    [3]
    L. Chen, M.R. Yang, F. Kong, J.Y. Guo, H.B. Shu, and J. Dai, Metallic penta-Graphene/penta-BN2 heterostructure with high specific capacity: A novel application platform for Li/Na-ion batteries, J. Alloys Compd., 901(2022), art. No. 163538. doi: 10.1016/j.jallcom.2021.163538
    [4]
    J.L. Chen, X.M. Guo, M.Y. Gao, et al., Self-supporting dual-confined porous Si@c-ZIF@carbon nanofibers for high-performance lithium-ion batteries, Chem. Commun., 57(2021), No. 81, p. 10580. doi: 10.1039/D1CC04172J
    [5]
    J.J. Xu, D. Wang, S.Y. Kong, R.Z. Li, Z.L. Hong, and F.Q. Huang, Pyrochlore phase Ce2Sn2O7 via an atom-confining strategy for reversible lithium storage, J. Mater. Chem. A, 8(2020), No. 11, p. 5744. doi: 10.1039/C9TA13602A
    [6]
    D. Zhang, C.Y. Zhang, X. Zheng, et al., Facile synthesis of the Mn3O4 polyhedron grown on N-doped honeycomb carbon as high-performance negative material for lithium-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1152. doi: 10.1007/s12613-022-2590-5
    [7]
    L. Chen, M.R. Yang, F. Kong, W.L. Du, J.Y. Guo, and H.B. Shu, Penta-BCN monolayer with high specific capacity and mobility as a compelling anode material for rechargeable batteries, Phys. Chem. Chem. Phys., 23(2021), No. 32, p. 17693. doi: 10.1039/D1CP03017E
    [8]
    P. Wang, M.Q. Shen, H. Zhou, C.F. Meng, and A.H. Yuan, MOF-derived CuS@Cu-BTC composites as high-performance anodes for lithium-ion batteries, Small, 15(2019), No. 47, art. No. 1903522. doi: 10.1002/smll.201903522
    [9]
    J. Yu, Y.B. Wei, B.C. Meng, et al., Homogeneous distributed natural pyrite-derived composite induced by modified graphite as high-performance lithium-ion batteries anode, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1353. doi: 10.1007/s12613-023-2598-5
    [10]
    K. Cao, L. Jiao, H. Liu, et al., 3D Hierarchical porous α‐Fe2O3 nanosheets for high‐performance lithium‐ion batteries, Adv. Energy Mater., 5(2015), No. 4, art. No. 1401421. doi: 10.1002/aenm.201401421
    [11]
    J.F. Zhao, S.C. Zhang, W.B. Liu, Z.J. Du, and H. Fang, Fe3O4/PPy composite nanospheres as anode for lithium-ion batteries with superior cycling performance, Electrochim. Acta, 121(2014), p. 428. doi: 10.1016/j.electacta.2013.12.105
    [12]
    B. Li, T. Zhang, S.H. Wei, and W. Gao, Nitrogen-doped carbon hollow spheres packed with multiple nano Sn particles for enhanced lithium storage, Chem. Eng. J., 446(2022), art. No. 136768. doi: 10.1016/j.cej.2022.136768
    [13]
    B. Li, W. Zhang, T. Zhang, S.H. Wei, and W. Gao, Accurately tailoring yolk-shell spheres to balance cycling stability and volumetric capacity of lithium storage, J. Alloys Compd., 917(2022), art. No. 165548. doi: 10.1016/j.jallcom.2022.165548
    [14]
    G.L. Xia, Q.L. Gao, D.L. Sun, and X.B. Yu, Porous carbon nanofibers encapsulated with peapod-like hematite nanoparticles for high-rate and long-life battery anodes, Small, 13(2017), No. 44, art. No. 1701561. doi: 10.1002/smll.201701561
    [15]
    J.M. Jeong, B.G. Choi, S.C. Lee, et al., Hierarchical hollow spheres of Fe2O3@Polyaniline for lithium ion battery anodes, Adv. Mater., 25(2013), No. 43, p. 6250. doi: 10.1002/adma.201302710
    [16]
    Y.C. Chen, C.X. Kang, L. Ma, et al., MOF-derived Fe2O3 decorated with MnO2 nanosheet arrays as anode for high energy density hybrid supercapacitor, Chem. Eng. J., 417(2021), art. No. 129243. doi: 10.1016/j.cej.2021.129243
    [17]
    C. Park, E. Samuel, B. Joshi, et al., Supersonically sprayed Fe2O3/C/CNT composites for highly stable Li-ion battery anodes, Chem. Eng. J., 395(2020), art. No. 125018. doi: 10.1016/j.cej.2020.125018
    [18]
    Y.S. Choi, W. Choi, W.S. Yoon, and J.M. Kim, Unveiling the genesis and effectiveness of negative fading in nanostructured iron oxide anode materials for lithium-ion batteries, ACS Nano, 16(2022), No. 1, p. 631. doi: 10.1021/acsnano.1c07943
    [19]
    X.Y. Chen, N. Sawut, K.A. Chen, et al., Filling carbon: A microstructure-engineered hard carbon for efficient alkali metal ion storage, Energy Environ. Sci., 16(2023), No. 9, p. 4041. doi: 10.1039/D3EE01154B
    [20]
    H. Kim, J.C. Hyun, D.H. Kim, et al., Revisiting lithium- and sodium-ion storage in hard carbon anodes, Adv. Mater., 35(2023), No. 12, art. No. 2209128. doi: 10.1002/adma.202209128
    [21]
    W.J. Han, X.Y. Qin, J.X. Wu, et al., Electrosprayed porous Fe3O4/carbon microspheres as anode materials for high-performance lithium-ion batteries, Nano Res., 11(2018), No. 2, p. 892. doi: 10.1007/s12274-017-1700-6
    [22]
    S.Y. Zhang, P.G. Zhang, A.J. Xie, S.K. Li, F.Z. Huang, and Y.H. Shen, A novel 2D porous print fabric-like α-Fe2O3 sheet with high performance as the anode material for lithium-ion battery, Electrochim. Acta, 212(2016), p. 912. doi: 10.1016/j.electacta.2016.06.099
    [23]
    H. Huang, L.J. Kong, W. Shuang, W. Xu, J. He, and X.H. Bu, Controlled synthesis of core-shell Fe2O3@N-C with ultralong cycle life for lithium-ion batteries, Chin. Chem. Lett., 33(2022), No. 2, p. 1037. doi: 10.1016/j.cclet.2021.08.013
    [24]
    X.Y. Hou, J.L. Kang, G. Zhou, and J.T. Wang, Preparation of Fe2O3@C composite with octahedron-like Fe2O3 embedded in carbon framework as a superior anode for LIBs, Mater. Lett., 313(2022), art. No. 131736. doi: 10.1016/j.matlet.2022.131736
    [25]
    Z.X. Lu, J. Wang, W.L. Feng, et al., Zinc single-atom regulated hard carbons for high rate and low temperature sodium ion batteries, Adv. Mater., 35(2023),No. 26, art. No. 2211461. doi: 10.1002/adma.202211461
    [26]
    F.P. Chen, Y.J. Di, Q. Su, et al., Vanadium-modified hard carbon spheres with sufficient pseudographitic domains as high-performance anode for sodium-ion batteries, Carbon Energy, 5(2023), No. 2, art. No. e191. doi: 10.1002/cey2.191
    [27]
    H.Y. Wang, H.X. Chen, C. Chen, et al., Tea-derived carbon materials as anode for high-performance sodium ion batteries, Chin. Chem. Lett., 34(2023), No. 4, art. No. 107465. doi: 10.1016/j.cclet.2022.04.063
    [28]
    C. Zhao, Z.F. Yan, B. Zhou, et al., Identifying the role of lewis-base sites for the chemistry in lithium-oxygen batteries, Angew. Chem. Int. Ed., 62(2023), No. 32, art. No. e202302746. doi: 10.1002/anie.202302746
    [29]
    L.L. Zhang, T. Wang, T.N. Gao, et al., Multistage self-assembly strategy: Designed synthesis of N-doped mesoporous carbon with high and controllable pyridine N content for ultrahigh surface-area-normalized capacitance, CCS Chem., 3(2021), No. 2, p. 870. doi: 10.31635/ccschem.020.202000233
    [30]
    R. Arrigo, M. Hävecker, S. Wrabetz, et al., Tuning the acid/base properties of nanocarbons by functionalization via amination, J. Am. Chem. Soc., 132(2010), No. 28, p. 9616. doi: 10.1021/ja910169v
    [31]
    J.Y. Mao, D.C. Niu, N. Zheng, et al., Fe3O4-embedded and N-doped hierarchically porous carbon nanospheres as high-performance lithium ion battery anodes, ACS Sustainable Chem. Eng., 7(2019), No. 3, p. 3424. doi: 10.1021/acssuschemeng.8b05651
    [32]
    P. Bhattacharya, M. Kota, D.H. Suh, K.C. Roh, and H.S. Park, Biomimetic spider-web-like composites for enhanced rate capability and cycle life of lithium ion battery anodes, Adv. Energy Mater., 7(2017), No. 17, art. No. 1700331. doi: 10.1002/aenm.201700331
    [33]
    Z.C. Yang, J.G. Shen, and L.A. Archer, An in situ method of creating metal oxide–carbon composites and their application as anode materials for lithium-ion batteries, J. Mater. Chem., 21(2011), No. 30, p. 11092. doi: 10.1039/c1jm10902b
    [34]
    Y. Yang, J.Q. Li, D.Q. Chen, and J.B. Zhao, A facile electrophoretic deposition route to the Fe3O4/CNTs/rGO composite electrode as a binder-free anode for lithium ion battery, ACS Appl. Mater. Interfaces, 8(2016), No. 40, p. 26730. doi: 10.1021/acsami.6b07990
    [35]
    F.X. Ma, H.B. Wu, C.Y. Xu, L. Zhen, and X.W. (David) Lou, Self-organized sheaf-like Fe3O4/C hierarchical microrods with superior lithium storage properties, Nanoscale, 7(2015), No. 10, p. 4411. doi: 10.1039/C5NR00046G
    [36]
    L.P. Kong, Y.T. Zhu, P.J. Williams, M. Kabbani, F.R. Brushett, and J.L.M. Rupp, Insights into Li+ storage mechanisms, kinetics, and reversibility of defect-engineered and functionalized multi-walled carbon nanotubes for enhanced energy storage, J. Mater. Chem. A, 12(2024), No. 7, p. 4299. doi: 10.1039/D3TA07362A
    [37]
    J.H. Kim, G.D. Park, and Y.C. Kang, Amorphous iron oxide–selenite composite microspheres with a yolk–shell structure as highly efficient anode materials for lithium-ion batteries, Nanoscale, 12(2020), No. 19, p. 10790. doi: 10.1039/D0NR01905D
    [38]
    X. Huang, H. Yu, J. Chen, Z.Y. Lu, R. Yazami, and H.H. Hng, Ultrahigh rate capabilities of lithium-ion batteries from 3D ordered hierarchically porous electrodes with entrapped active nanoparticles configuration, Adv. Mater., 26(2014), No. 8, p. 1296. doi: 10.1002/adma.201304467
    [39]
    S.H. Lee, S.H. Yu, J.E. Lee, et al., Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement, Nano Lett., 13(2013), No. 9, p. 4249. doi: 10.1021/nl401952h
    [40]
    L. Liu, X.F. Yang, C.X. Lv, et al., Seaweed-derived route to Fe2O3 hollow nanoparticles/N-doped graphene aerogels with high lithium ion storage performance, ACS Appl. Mater. Interfaces, 8(2016), No. 11, p. 7047. doi: 10.1021/acsami.5b12427
    [41]
    L.W. Su, Y.R. Zhong, and Z. Zhou, Role of transition metal nanoparticles in the extra lithium storage capacity of transition metal oxides: A case study of hierarchical core–shell Fe3O4@C and Fe@C microspheres, J. Mater. Chem. A, 1(2013), No. 47, p. 15158. doi: 10.1039/c3ta13233a
    [42]
    T.Z. Yuan, Y.Z. Jiang, W.P. Sun, et al., Ever-increasing pseudocapacitance in RGO–MnO–RGO sandwich nanostructures for ultrahigh-rate lithium storage, Adv. Funct. Mater., 26(2016), No. 13, p. 2198. doi: 10.1002/adfm.201504849
    [43]
    Y.T. Ma, J. Huang, X. Liu, et al., 3D graphene-encapsulated hierarchical urchin-like Fe3O4 porous particles with enhanced lithium storage properties, Chem. Eng. J., 327(2017), p. 678. doi: 10.1016/j.cej.2017.06.147
    [44]
    H. Wu, G.H. Yu, L.J. Pan, et al., Stable Li-ion battery anodes by in situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles, Nat. Commun., 4(2013), art. No. 1943. doi: 10.1038/ncomms2941
    [45]
    X.S. Zhou, L.J. Wan, and Y.G. Guo, Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries, Adv. Mater., 25(2013), No. 15, p. 2152. doi: 10.1002/adma.201300071
    [46]
    J.H. Zhao, X.X. He, W.H. Lai, et al., Catalytic defect-repairing using manganese ions for hard carbon anode with high-capacity and high-initial-coulombic-efficiency in sodium-ion batteries, Adv. Energy Mater., 13(2023), No. 18, art. No. 2300444. doi: 10.1002/aenm.202300444
    [47]
    J.C. Guo, Q. Liu, C.S. Wang, and M.R. Zachariah, Interdispersed amorphous MnOx–carbon nanocomposites with superior electrochemical performance as lithium-storage material, Adv. Funct. Mater., 22(2012), No. 4, p. 803. doi: 10.1002/adfm.201102137
    [48]
    P. Santhoshkumar, K. Prasanna, Y.N. Jo, I.N. Sivagami, S.H. Kang, and C.W. Lee, A facile and highly efficient short-time homogenization hydrothermal approach for the smart production of high-quality α-Fe2O3 for rechargeable lithium batteries, J. Mater. Chem. A, 5(2017), No. 32, p. 16712. doi: 10.1039/C7TA04797E
    [49]
    M. Hong, Y.J. Su, C. Zhou, et al., Scalable synthesis of γ-Fe2O3/CNT composite as high-performance anode material for lithium-ion batteries, J. Alloys Compd., 770(2019), p. 116. doi: 10.1016/j.jallcom.2018.08.118
    [50]
    P. Huang, W. Tao, H.X. Wu, et al., N-doped coaxial CNTs@α-Fe2O3@C nanofibers as anode material for high performance lithium ion battery, J. Energy Chem., 27(2018), No. 5, p. 1453. doi: 10.1016/j.jechem.2017.09.011
    [51]
    M. Li, H.R. Du, L. Kuai, K.F. Huang, Y.Y. Xia, and B.Y. Geng, Scalable dry production process of a superior 3D net-like carbon-based iron oxide anode material for lithium-ion batteries, Angew. Chem. Int. Ed., 56(2017), No. 41, p. 12649. doi: 10.1002/anie.201707647
    [52]
    Z.Z. Du, X.J. Chen, W. Hu, et al., Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries, J. Am. Chem. Soc., 141(2019), No. 9, p. 3977. doi: 10.1021/jacs.8b12973
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(198) PDF Downloads(8) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return