Cite this article as: |
Xihao Li, Shuai Cao, and Erol Yilmaz, Microstructural evolution and strengthening mechanism of aligned steel fiber cement-based tail backfills exposed to electromagnetic induction, Int. J. Miner. Metall. Mater., 31(2024), No. 11, pp. 2390-2403. https://doi.org/10.1007/s12613-024-2985-6 |
Shuai Cao E-mail: sandy_cao@ustb.edu.cn
Erol Yilmaz E-mail: erol.yilmaz@erdogan.edu.tr
[1] |
L.H. Yang, J.C. Li, H.B. Liu, et al., Systematic review of mixing technology for recycling waste tailings as cemented paste backfill in mines in China, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1430. doi: 10.1007/s12613-023-2609-6
|
[2] |
A. Fernández, P. Segarra, J.A. Sanchidrián, and R. Navarro, Ore/waste identification in underground mining through geochemical calibration of drilling data using machine learning techniques, Ore Geol. Rev., 168(2024), art. No. 106045. doi: 10.1016/j.oregeorev.2024.106045
|
[3] |
D.W. Li, A.O. Ramos, A. Bah, and F.H. Li, Valorization of lead-zinc mine tailing waste through geopolymerization: Synthesis, mechanical, and microstructural properties, J. Environ. Manage., 349(2024), art. No. 119501. doi: 10.1016/j.jenvman.2023.119501
|
[4] |
Y. Xu, Y.J. Han, G.Q. Zhao, and S.Y. Meng, Enhancing geotechnical reinforcement: Exploring molybdenum tailings and basalt fibre-modified composites for sustainable construction, Constr. Build. Mater., 411(2024), art. No. 134452. doi: 10.1016/j.conbuildmat.2023.134452
|
[5] |
H. Qin, S. Cao, and E. Yilmaz, Mechanical, energy evolution, damage and microstructural behavior of cemented tailings-rock fill considering rock content and size effects, Constr. Build. Mater., 411(2024), art. No. 134449. doi: 10.1016/j.conbuildmat.2023.134449
|
[6] |
Y.K. Liu, Y.M. Wang, and Q.S. Chen, Using cemented paste backfill to tackle the phosphogypsum stockpile in China: A down-to-earth technology with new vitalities in pollutant retention and CO2 abatement, Int. J. Miner. Metall. Mater., 31(2024), No. 7, p. 1480. doi: 10.1007/s12613-023-2799-y
|
[7] |
S. Cao, G.L. Xue, E. Yilmaz, and Z.Y. Yin, Assessment of rheological and sedimentation characteristics of fresh cemented tailings backfill slurry, Int. J. Min. Reclam. Environ., 35(2021), No. 5, p. 319. doi: 10.1080/17480930.2020.1826092
|
[8] |
G.L. Xue, E. Yilmaz, and Y.D. Wang, Progress and prospects of mining with backfill in metal mines in China, Int. J. Miner. Metall. Mater., 30(2023), No. 8, p. 1455. doi: 10.1007/s12613-023-2663-0
|
[9] |
A.X. Wu, Z.Q. Wang, Z.E. Ruan, R. Bürger, S.Y. Wang, and Y. Mo, Rheological properties and concentration evolution of thickened tailings under the coupling effect of compression and shear, Int. J. Miner. Metall. Mater., 31(2024), No. 5, p. 862. doi: 10.1007/s12613-024-2832-9
|
[10] |
R.G. Gao, W.J. Wang, X. Xiong, J.J. Li, and C. Xu, Effect of curing temperature on the mechanical properties and pore structure of cemented backfill materials with waste rock-tailings, Constr. Build. Mater., 409(2023), art. No. 133850. doi: 10.1016/j.conbuildmat.2023.133850
|
[11] |
J. Wang, Q.J. Yu, Z.Z. Xiang, J.X. Fu, L.M. Wang, and W.D. Song, Influence of basalt fiber on pore structure, mechanical performance and damage evolution of cemented tailings backfill, J. Mater. Res. Technol., 27(2023), p. 5227. doi: 10.1016/j.jmrt.2023.10.240
|
[12] |
J.J. Li, S. Cao, and E. Yilmaz, Characterization of macro mechanical properties and microstructures of cement-based composites prepared from fly ash, gypsum and steel slag, Minerals, 12(2021), No. 1, art. No. 6. doi: 10.3390/min12010006
|
[13] |
Q.L. Li, B.W. Wang, L. Yang, et al., Synthesis of cemented paste backfill by reutilizing multiple industrial waste residues and ultrafine tailings: Strength, microstructure, and GA-GPR prediction modeling, Powder Technol., 434(2024), art. No. 119337. doi: 10.1016/j.powtec.2023.119337
|
[14] |
S.C. Wu, T.C. Sun, J. Kou, H. Li, and E.X. Gao, Green and efficient recovery of poly metals from converter sludge through reduction roasting and preparation of backfill from tailings, Chem. Eng. J., 479(2024), art. No. 147582. doi: 10.1016/j.cej.2023.147582
|
[15] |
K.Z. Xia, C.X. Chen, X.M. Liu, Y. Wang, X.T. Liu, and J.H. Yuan, Estimating shear strength of high-level pillars supported with cemented backfilling using the Hoek–Brown strength criterion, J. Rock Mech. Geotech. Eng., 16(2024), No. 2, p. 454. doi: 10.1016/j.jrmge.2023.06.004
|
[16] |
T. Kasap, E. Yilmaz, and M. Sari, Physico-chemical and micro-structural behavior of cemented mine backfill: Effect of pH in dam tailings, J. Environ. Manage., 314(2022), art. No. 115034. doi: 10.1016/j.jenvman.2022.115034
|
[17] |
W.J. Liu, Z.X. Liu, S. Xiong, and M. Wang, Comparative prediction performance of the strength of a new type of Ti tailings cemented backfilling body using PSO-RF, SSA-RF, and WOA-RF models, Case Stud. Constr. Mater., 20(2024), art. No. e02766.
|
[18] |
Z.Q. Huang, S. Cao, and E. Yilmaz, Microstructure and mechanical behavior of cemented gold/tungsten mine tailings-crushed rock backfill: Effects of rock gradation and content, J. Environ. Manage., 339(2023), art. No. 117897. doi: 10.1016/j.jenvman.2023.117897
|
[19] |
J.J. Li, S. Cao, and E. Yilmaz, Reinforcing effects of polypropylene on energy absorption and fracturing of cement-based tailings backfill under impact loading, Int. J. Miner. Metall. Mater., 31(2024), No. 4, p. 650. doi: 10.1007/s12613-023-2806-3
|
[20] |
H.B. Liu and M. Fall, Testing the properties of cemented tailings backfill under multiaxial compressive loading, Constr. Build. Mater., 421(2024), art. No. 135682. doi: 10.1016/j.conbuildmat.2024.135682
|
[21] |
X. Zhang, X.L. Xue, D.X. Ding, P.C. Sun, J.L. Li, and Y. He, A study of the mechanical properties, environmental effect, and microscopic mechanism of phosphorus slag-based uranium tailings backfilling materials, J. Cleaner Prod., 446(2024), art. No. 141306. doi: 10.1016/j.jclepro.2024.141306
|
[22] |
S.X. Zou, S. Cao, and E. Yilmaz, Enhancing flexural property and mesoscopic mechanism of cementitious tailings backfill fabricated with 3D-printed polymers, Constr. Build. Mater., 414(2024), art. No. 135009. doi: 10.1016/j.conbuildmat.2024.135009
|
[23] |
X.P. Song, Y.C. Huang, S. Wang, H.G. Yu, and Y.X. Hao, Macro-mesoscopic mechanical properties and damage progression of cemented tailings backfill under cyclic static load disturbance, Compos. Struct., 322(2023), art. No. 117433. doi: 10.1016/j.compstruct.2023.117433
|
[24] |
Y.Y. Wang, Z.Q. Yu, and H.W. Wang, Experimental investigation on some performance of rubber fiber modified cemented paste backfill, Constr. Build. Mater., 271(2021), art. No. 121586. doi: 10.1016/j.conbuildmat.2020.121586
|
[25] |
A.A. Wang, S. Cao, and E. Yilmaz, Quantitative analysis of pore characteristics of nanocellulose reinforced cementitious tailings fills using 3D reconstruction of CT images, J. Mater. Res. Technol., 26(2023), p. 1428. doi: 10.1016/j.jmrt.2023.08.004
|
[26] |
B. Zhang, K.Q. Li, R.J. Cai, H.B. Liu, Y.F. Hu, and B. Han, Properties of modified superfine tailings cemented paste backfill: Effects of mixing time and Al2O3 dosage, Constr. Build. Mater., 417(2024), art. No. 135365. doi: 10.1016/j.conbuildmat.2024.135365
|
[27] |
J.J. Li, S. Cao, and W.D. Song, Flexural behavior of cementitious backfill composites reinforced by various 3D printed polymeric lattices, Compos. Struct., 323(2023), art. No. 117489. doi: 10.1016/j.compstruct.2023.117489
|
[28] |
M. Chen, H. Zhong, H. Wang, and M.Z. Zhang, Behaviour of recycled tyre polymer fibre reinforced concrete under dynamic splitting tension, Cem. Concr. Compos., 114(2020), art. No. 103764. doi: 10.1016/j.cemconcomp.2020.103764
|
[29] |
S.Z. Zou, W.H. Guo, S. Wang, Y.T. Gao, L.Y. Qian, and Y. Zhou, Investigation of the dynamic mechanical properties and damage mechanisms of fiber-reinforced cemented tailing backfill under triaxial split-Hopkinson pressure bar testing, J. Mater. Res. Technol., 27(2023), p. 105. doi: 10.1016/j.jmrt.2023.09.236
|
[30] |
X.H. Li, S. Cao, and E. Yilmaz, Effect of magnetic induction intensity and steel fiber rate on strength improvement of cementitious filling composites, Constr. Build. Mater., 428(2024), art. No. 136417. doi: 10.1016/j.conbuildmat.2024.136417
|
[31] |
K. Zhao, Y.M. Lai, Z.W. He, et al., Study on energy dissipation and acoustic emission characteristics of fiber tailings cemented backfill with different ash-sand ratios, Process Saf. Environ. Prot., 174(2023), p. 983. doi: 10.1016/j.psep.2023.04.038
|
[32] |
L. Cui and A. McAdie, Experimental study on evolutive fracture behavior and properties of sulfate-rich fiber-reinforced cemented paste backfill under pure mode-I, mode-II, and mode-III loadings, Int. J. Rock Mech. Min. Sci., 169(2023), art. No. 105434. doi: 10.1016/j.ijrmms.2023.105434
|
[33] |
G.L. Xue, E. Yilmaz, G.R. Feng, and S. Cao, Bending behavior and failure mode of cemented tailings backfill composites incorporating different fibers for sustainable construction, Constr. Build. Mater., 289(2021), art. No. 123163. doi: 10.1016/j.conbuildmat.2021.123163
|
[34] |
G.L. Xue, E. Yilmaz, W.D. Song, and S. Cao, Mechanical, flexural and microstructural properties of cement-tailings matrix composites: Effects of fiber type and dosage, Composites Part B, 172(2019), p. 131. doi: 10.1016/j.compositesb.2019.05.039
|
[35] |
Z.Q. Huang, S. Cao, and E. Yilmaz, Investigation on the flexural strength, failure pattern and microstructural characteristics of combined fibers reinforced cemented tailings backfill, Constr. Build. Mater., 300(2021), art. No. 124005. doi: 10.1016/j.conbuildmat.2021.124005
|
[36] |
S. Wang, X.P. Song, M.L. Wei, et al., Strength characteristics and microstructure evolution of cemented tailings backfill with rice straw ash as an alternative binder, Constr. Build. Mater., 297(2021), art. No. 123780. doi: 10.1016/j.conbuildmat.2021.123780
|
[37] |
Z.B. Guo, J.P. Qiu, A. Kirichek, H. Zhou, C. Liu, and L. Yang, Recycling waste tyre polymer for production of fibre reinforced cemented tailings backfill in green mining, Sci. Total Environ., 908(2024), art. No. 168320. doi: 10.1016/j.scitotenv.2023.168320
|
[38] |
S-T. Kang and J-K. Kim, The relation between fiber orientation and tensile behavior in an ultra high performance fiber reinforced cementitious composites (UHPFRCC), Cem. Concr. Res., 41 (2011), No. 10, p.1001. doi: 10.1016/j.cemconres.2011.05.009
|
[39] |
M.M. Al Rifai, K.S. Sikora, and M.N.S. Hadi, Magnetic alignment of micro steel fibers embedded in self-compacting concrete, Constr. Build. Mater., 412(2024), art. No. 134796. doi: 10.1016/j.conbuildmat.2023.134796
|
[40] |
H. Zhang, S. Cao, and E. Yilmaz, Influence of 3D-printed polymer structures on dynamic splitting and crack propagation behavior of cementitious tailings backfill, Constr. Build. Mater., 343(2022), art. No. 128137. doi: 10.1016/j.conbuildmat.2022.128137
|
[41] |
Y.A. Li, W.H. Zhang, G.W. Sun, et al., A new orientational molding method for ultra-high performance concrete with high content of steel fiber and investigation on its flexure and axial tensile properties, Constr. Build. Mater., 400(2023), art. No. 132755. doi: 10.1016/j.conbuildmat.2023.132755
|
[42] |
M.J.H. Wijffels, R.J.M. Wolfs, A.S.J. Suiker, and T.A.M. Salet, Magnetic orientation of steel fibres in self-compacting concrete beams: Effect on failure behaviour, Cem. Concr. Compos., 80(2017), p. 342. doi: 10.1016/j.cemconcomp.2017.04.005
|
[43] |
X.H. Zhang, F.B. He, J. Chen, C.Q. Yang, and F. Xu, Orientation of steel fibers in concrete attracted by magnetized rebar and its effects on bond behavior, Cem. Concr. Compos., 138(2023), art. No. 104977. doi: 10.1016/j.cemconcomp.2023.104977
|
[44] |
Y.X. Zheng, X.M. Lv, S.W. Hu, J.B. Zhuo, C. Wan, and J.Q. Liu, Mechanical properties and durability of steel fiber reinforced concrete: A review, J. Build. Eng., 82(2024), art. No. 108025. doi: 10.1016/j.jobe.2023.108025
|
[45] |
S.Q. Meng, C.J. Jiao, X.W. Ouyang, Y.F. Niu, and J.Y. Fu, Effect of steel fiber-volume fraction and distribution on flexural behavior of Ultra-high performance fiber reinforced concrete by digital image correlation technique, Constr. Build. Mater., 320(2022), art. No. 126281. doi: 10.1016/j.conbuildmat.2021.126281
|
[46] |
H. Zhang, Y.J. Huang, M. Lin, and Z.J. Yang, Effects of fibre orientation on tensile properties of ultra high performance fibre reinforced concrete based on meso-scale Monte Carlo simulations, Compos. Struct., 287(2022), art. No. 115331. doi: 10.1016/j.compstruct.2022.115331
|
[47] |
H.H. Huang, X.J. Gao, L.S. Li, and H. Wang, Improvement effect of steel fiber orientation control on mechanical performance of UHPC, Constr. Build. Mater., 188(2018), p. 709. doi: 10.1016/j.conbuildmat.2018.08.146
|
[48] |
F. Javahershenas, M.S. Gilani, and M. Hajforoush, Effect of magnetic field exposure time on mechanical and microstructure properties of steel fiber-reinforced concrete (SFRC), J. Build. Eng., 35(2021), art. No. 101975. doi: 10.1016/j.jobe.2020.101975
|
[49] |
D.Y. Yoo, S.T. Kang, N. Banthia, and Y.S. Yoon, Nonlinear finite element analysis of ultra-high-performance fiber-reinforced concrete beams, Int. J. Damage Mech., 26(2017), No. 5, p. 735. doi: 10.1177/1056789515612559
|
[50] |
L.B. Qing, H.L. Sun, Y.B. Zhang, R. Mu, and M.D. Bi, Research progress on aligned fiber reinforced cement-based composites, Constr. Build. Mater., 363(2023), art. No. 129578. doi: 10.1016/j.conbuildmat.2022.129578
|
[51] |
H. Li, L. Li, J. Zhou, R. Mu, and M.F. Xu, Influence of fiber orientation on the microstructures of interfacial transition zones and pull-out behavior of steel fiber in cementitious composites, Cem. Concr. Compos., 128(2022), art. No. 104459. doi: 10.1016/j.cemconcomp.2022.104459
|
[52] |
R. Mu, J. Chen, X.S. Chen, C.R. Diao, X.W. Wang, and L.B. Qing, Effect of the orientation of steel fiber on the strength of ultra-high-performance concrete (UHPC), Constr. Build. Mater., 406(2023), art. No. 133431. doi: 10.1016/j.conbuildmat.2023.133431
|
[53] |
R. Mu, C.R. Diao, H.Q. Liu, et al., Design, preparation and mechanical properties of full-field aligned steel fiber reinforced cementitious composite, Constr. Build. Mater., 272(2021), art. No. 121631. doi: 10.1016/j.conbuildmat.2020.121631
|
[54] |
L. Ke, L.M. Liang, Z. Feng, C.X. Li, J.L. Zhou, and Y.L. Li, Bond performance of CFRP bars embedded in UHPFRC incorporating orientation and content of steel fibers, J. Build. Eng., 73(2023), art. No. 106827. doi: 10.1016/j.jobe.2023.106827
|
[55] |
G.D. Cao, Z.J. Li, S.Q. Jiang, et al., Experimental analysis and numerical simulation of flow behavior of fresh steel fibre reinforced concrete in magnetic field, Constr. Build. Mater., 347(2022), art. No. 128505. doi: 10.1016/j.conbuildmat.2022.128505
|
[56] |
Y.Q. Hou, S.H. Yin, X. Chen, M.Z. Zhang, and S.X. Yang, Study on characteristic stress and energy damage evolution mechanism of cemented tailings backfill under uniaxial compression, Constr. Build. Mater., 301(2021), art. No. 124333. doi: 10.1016/j.conbuildmat.2021.124333
|
[57] |
X.P. Song, J.B. Li, S. Wang, et al., Study of mechanical behavior and cracking mechanism of prefabricated fracture cemented paste backfill under different loading rates from the perspective of energy evolution, Constr. Build. Mater., 361(2022), art. No. 129737. doi: 10.1016/j.conbuildmat.2022.129737
|
[58] |
C.L. Wang, G.Y. Du, E.B. Li, X. Sun, and Y. Pan, Evolution of strength parameters and energy dissipation of Beishan deep granite under conventional triaxial compression, Chin J Rock Mech. Eng., 40(2021), No. 11, p. 2238.
|
[59] |
K. Zhao, X. Yu, Y. Zhou, Q. Wang, J.Q. Wang, and J.L. Hao, Energy evolution of brittle granite under different loading rates, Int. J. Rock Mech. Min. Sci., 132(2020), art. No. 104392. doi: 10.1016/j.ijrmms.2020.104392
|
[60] |
B.X. Yan, H.W. Jia, E. Yilmaz, X.P. Lai, P.F. Shan, and C. Hou, Numerical study on microscale and macroscale strength behaviors of hardening cemented paste backfill, Constr. Build. Mater., 321(2022), art. No. 126327. doi: 10.1016/j.conbuildmat.2022.126327
|
[61] |
P. Yan, B. Chen, M.Z. Zhu, and X.R. Meng, Study on mechanical properties and microstructure of green ultra-high performance concrete prepared by recycling waste glass powder, J. Build. Eng., 82(2024), art. No. 108206. doi: 10.1016/j.jobe.2023.108206
|