Wangzhang Chen, Wei Gou, Yageng Li, Xiangmin Li, Meng Li, Jianxin Hou, Xiaotong Zhang, Zhangzhi Shi,  and Luning Wang, Machine learning design of 400 MPa grade biodegradable Zn–Mn based alloys with appropriate corrosion rates, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2727-2736. https://doi.org/10.1007/s12613-024-2995-4
Cite this article as:
Wangzhang Chen, Wei Gou, Yageng Li, Xiangmin Li, Meng Li, Jianxin Hou, Xiaotong Zhang, Zhangzhi Shi,  and Luning Wang, Machine learning design of 400 MPa grade biodegradable Zn–Mn based alloys with appropriate corrosion rates, Int. J. Miner. Metall. Mater., 31(2024), No. 12, pp. 2727-2736. https://doi.org/10.1007/s12613-024-2995-4
Research Article

Machine learning design of 400 MPa grade biodegradable Zn–Mn based alloys with appropriate corrosion rates

+ Author Affiliations
  • Corresponding authors:

    Zhangzhi Shi    E-mail: ryansterne@163.com

    Luning Wang    E-mail: luning.wang@ustb.edu.cn

  • Received: 15 July 2024Revised: 16 August 2024Accepted: 24 August 2024Available online: 26 August 2024
  • The commonly used trial-and-error method of biodegradable Zn alloys is costly and blindness. In this study, based on the self-built database of biodegradable Zn alloys, two machine learning models are established by the first time to predict the ultimate tensile strength (UTS) and immersion corrosion rate (CR) of biodegradable Zn alloys. A real-time visualization interface has been established to design Zn–Mn based alloys; a representative alloy is Zn–0.4Mn–0.4Li–0.05Mg. Through tensile mechanical properties and immersion corrosion rate tests, its UTS reaches 420 MPa, and the prediction error is only 0.95%. CR is 73 μm/a and the prediction error is 5.5%, which elevates 50 MPa grade of UTS and owns appropriate corrosion rate. Finally, influences of the selected features on UTS and CR are discussed in detail. The combined application of UTS and CR model provides a new strategy for synergistically regulating comprehensive properties of biodegradable Zn alloys.
  • loading
  • [1]
    J. Sun, X. Zhang, Z.Z. Shi, et al., Development of a high-strength Zn–Mn–Mg alloy for ligament reconstruction fixation, Acta Biomater., 119(2021), p. 485. doi: 10.1016/j.actbio.2020.10.032
    [2]
    B. Jia, H.T. Yang, Y. Han, et al. , In vitro and in vivo studies of Zn–Mn biodegradable metals designed for orthopedic applications, Acta Biomater., 108(2020), p. 358. doi: 10.1016/j.actbio.2020.03.009
    [3]
    Z.Z. Shi, X.M. Li, S.L. Yao, et al., 300 MPa grade biodegradable high-strength ductile low-alloy (BHSDLA) Zn–Mn–Mg alloys: An in vitro study, J. Mater. Sci. Technol., 138(2023), p. 233. doi: 10.1016/j.jmst.2022.08.015
    [4]
    J. Venezuela and M.S. Dargusch, The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review, Acta Biomater., 87(2019), p. 1. doi: 10.1016/j.actbio.2019.01.035
    [5]
    T. Wang, Z.Z. Shi, H.Y. Zhong, et al. , In vitro performance of a biodegradable zinc alloy adjustable-loop cortical suspension fixation for anterior cruciate ligament reconstruction, Int. J. Miner. Metall. Mater., 31(2024), No. 5, p. 887. doi: 10.1007/s12613-024-2889-5
    [6]
    C. Zhou, H.F. Li, Y.X. Yin, et al., Long-term in vivo study of biodegradable Zn–Cu stent: A 2-year implantation evaluation in porcine coronary artery, Acta Biomater., 97(2019), p. 657. doi: 10.1016/j.actbio.2019.08.012
    [7]
    M. Saini, Y. Singh, P. Arora, V. Arora, and K. Jain, Implant biomaterials: A comprehensive review, World J. Clin. Cases, 3(2015), No. 1, p. 52. doi: 10.12998/wjcc.v3.i1.52
    [8]
    Z.Z. Shi, J. Yu, X.F. Liu, et al., Effects of Ag, Cu or Ca addition on microstructure and comprehensive properties of biodegradable Zn–0.8Mn alloy, Mater. Sci. Eng. C, 99(2019), p. 969. doi: 10.1016/j.msec.2019.02.044
    [9]
    Z.Z. Shi, J. Yu, and X.F. Liu, Microalloyed Zn–Mn alloys: From extremely brittle to extraordinarily ductile at room temperature, Mater. Des., 144(2018), p. 343. doi: 10.1016/j.matdes.2018.02.049
    [10]
    J.G. Kuang and Z.L. Long, Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms, Int. J. Miner. Metall. Mater., 31(2024), No. 2, p. 337. doi: 10.1007/s12613-023-2679-5
    [11]
    B.F. Shi, T. Lookman, and D.Z. Xue, Multi-objective optimization and its application in materials science, Mater. Genome Eng. Adv., 1(2023), No. 2, art. No. e14. doi: 10.1002/mgea.14
    [12]
    H.D. Fu, H.T. Zhang, C.S. Wang, W. Yong, and J.X. Xie, Recent progress in the machine learning-assisted rational design of alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 635. doi: 10.1007/s12613-022-2458-8
    [13]
    Y. Shang, Z.Y. Xiong, K. An, J.A. Hauch, C.J. Brabec, and N. Li, Materials genome engineering accelerates the research and development of organic and perovskite photovoltaics, Mater. Genome Eng. Adv., 2(2024), No. 1, art. No. e28. doi: 10.1002/mgea.28
    [14]
    J.Q. Li, H.T. Zhang, J.T. Sun, H.D. Fu, and J.X. Xie, Design of low-alloying and high-performance solid solution-strengthened copper alloys with element substitution for sustainable development, Int. J. Miner. Metall. Mater., 31(2024), No. 5, p. 826. doi: 10.1007/s12613-024-2870-3
    [15]
    H.T. Zhang, H.D. Fu, X.Q. He, et al., Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screening, Acta Mater., 200(2020), p. 803. doi: 10.1016/j.actamat.2020.09.068
    [16]
    X.M. Feng, Z.L. Wang, L. Jiang, F. Zhao, and Z.H. Zhang, Simultaneous enhancement in mechanical and corrosion properties of Al–Mg–Si alloys using machine learning, J. Mater. Sci. Technol., 167(2023), p. 1. doi: 10.1016/j.jmst.2023.04.072
    [17]
    Y.F. Juan, G.S. Niu, Y. Yang, et al., Accelerated design of Al−Zn−Mg−Cu alloys via machine learning, Trans. Nonferrous Met. Soc. China, 34(2024), No. 3, p. 709. doi: 10.1016/S1003-6326(23)66429-5
    [18]
    H.Y. Li, X.W. Li, Y.N. Li, et al., Machine learning assisted design of aluminum-lithium alloy with high specific modulus and specific strength, Mater. Des., 225(2023), art. No. 111483. doi: 10.1016/j.matdes.2022.111483
    [19]
    H.Y. Gong, J. He, X.T. Zhang, et al., Wan, A repository for the publication and sharing of heterogeneous materials data, Sci. Data, 9(2022), No. 1, art. No. 787. doi: 10.1038/s41597-022-01897-z
    [20]
    S.L. Liu, Y.J. Su, H.Q. Yin, et al., An infrastructure with user-centered presentation data model for integrated management of materials data and services, NPJ Comput. Mater., 7(2021), No. 1, art. No. 88. doi: 10.1038/s41524-021-00557-x
    [21]
    H.T. Zhang, H.D. Fu, S.C. Zhu, W. Yong, and J.X. Xie, Machine learning assisted composition effective design for precipitation strengthened copper alloys, Acta Mater., 215(2021), art. No. 117118. doi: 10.1016/j.actamat.2021.117118
    [22]
    Z.Z. Shi, J. Yu, X.F. Liu, and L.N. Wang, Fabrication and characterization of novel biodegradable Zn–Mn–Cu alloys, J. Mater. Sci. Technol., 34(2018), No. 6, p. 1008. doi: 10.1016/j.jmst.2017.11.026
    [23]
    Z. Li, Z.Z. Shi, Y. Yan, et al., Suppression mechanism of initial pitting corrosion of pure Zn by Li alloying, Corros. Sci., 189(2021), art. No. 109564. doi: 10.1016/j.corsci.2021.109564
    [24]
    H.T. Yang, B. Jia, Z.C. Zhang, et al., Alloying design of biodegradable zinc as promising bone implants for load-bearing applications, Nat. Commun., 11(2020), No. 1, art. No. 401. doi: 10.1038/s41467-019-14153-7
    [25]
    S.N. Sun, Y.P. Ren, L.Q. Wang, B. Yang, H.X. Li, and G.W. Qin, Abnormal effect of Mn addition on the mechanical properties of as-extruded Zn alloys, Mater. Sci. Eng. A, 701(2017), p. 129. doi: 10.1016/j.msea.2017.06.037
    [26]
    P.S. Guo, F.X. Li, L.J. Yang, et al., Ultra-fine-grained Zn–0.5Mn alloy processed by multi-pass hot extrusion: Grain refinement mechanism and room-temperature superplasticity, Mater. Sci. Eng. A, 748(2019), p. 262. doi: 10.1016/j.msea.2019.01.089
    [27]
    Z.Z. Shi, H.Y. Li, J.Y. Xu, X.X. Gao, and X.F. Liu, Microstructure evolution of a high-strength low-alloy Zn–Mn–Ca alloy through casting, hot extrusion and warm caliber rolling, Mater. Sci. Eng. A, 771(2020), art. No. 138626. doi: 10.1016/j.msea.2019.138626
    [28]
    S.Y. Liu, D. Kent, N. Doan, M. Dargusch, and G. Wang, Effects of deformation twinning on the mechanical properties of biodegradable Zn–Mg alloys, Bioact. Mater., 4(2019), p. 8. doi: 10.1016/j.bioactmat.2018.11.001
    [29]
    W. Bednarczyk, M. Wątroba, J. Kawałko, and P. Bała, Can zinc alloys be strengthened by grain refinement? A critical evaluation of the processing of low-alloyed binary zinc alloys using ECAP, Mater. Sci. Eng. A, 748(2019), p. 357. doi: 10.1016/j.msea.2019.01.117
    [30]
    L.F. Ye, H. Liu, C. Sun, et al., Achieving high strength, excellent ductility, and suitable biodegradability in a Zn-0.1Mg alloy using room-temperature ECAP, J. Alloys Compd., 926(2022), art. No. 166906. doi: 10.1016/j.jallcom.2022.166906
    [31]
    M. Wątroba, W. Bednarczyk, J. Kawałko, and P. Bała, Effect of zirconium microaddition on the microstructure and mechanical properties of Zn–Zr alloys, Mater. Charact., 142(2018), p. 187. doi: 10.1016/j.matchar.2018.05.055
    [32]
    L.Q. Wang, Y.P. Ren, S.N. Sun, H. Zhao, S. Li, and G.W. Qin, Microstructure, mechanical properties and fracture behavior of as-extruded Zn–Mg binary alloys, Acta Metall. Sin. Engl. Lett., 30(2017), No. 10, p. 931. doi: 10.1007/s40195-017-0585-4
    [33]
    L.Q. Wang, Y.F. He, H. Zhao, et al., Effect of cumulative strain on the microstructural and mechanical properties of Zn–0.02wt%Mg alloy wires during room-temperature drawing process, J. Alloys Compd., 740(2018), p. 949. doi: 10.1016/j.jallcom.2018.01.059
    [34]
    Z.Z. Shi, X.X. Gao, H.J. Zhang, et al., Design biodegradable Zn alloys: Second phases and their significant influences on alloy properties, Bioact. Mater., 5(2020), No. 2, p. 210. doi: 10.1016/j.bioactmat.2020.02.010
    [35]
    Y.P. Diao, L.C. Yan, and K.W. Gao, A strategy assisted machine learning to process multi-objective optimization for improving mechanical properties of carbon steels, J. Mater. Sci. Technol., 109(2022), p. 86. doi: 10.1016/j.jmst.2021.09.004
    [36]
    B. Xu, H.Q. Yin, X. Jiang, et al., Data-driven design of Ni-based turbine disc superalloys to improve yield strength, J. Mater. Sci. Technol., 155(2023), p. 175. doi: 10.1016/j.jmst.2023.01.032
    [37]
    M.Y. Jiang, G. Monnet, and B. Devincre, On the origin of the Hall–Petch law: A 3D-dislocation dynamics simulation investigation, Acta Mater., 209(2021), art. No. 116783. doi: 10.1016/j.actamat.2021.116783
    [38]
    M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials, Cambridge University Press, Cambridge, 2008.
    [39]
    J.B. Yang, Y. He, Y.L. Ma, et al., Theoretical model of the temperature-dependent ultimate tensile strength from the viewpoint of dislocation kinetics approach for FCC metals, Eur. J. Mech. A/solids, 103(2024), art. No. 105160. doi: 10.1016/j.euromechsol.2023.105160
    [40]
    U.F. Kocks and H. Mecking, Physics and phenomenology of strain hardening: The FCC case, Prog. Mater. Sci., 48(2003), No. 3, p. 171. doi: 10.1016/S0079-6425(02)00003-8
    [41]
    W.G. Li, H.B. Kou, X.Y. Zhang, et al., Temperature-dependent elastic modulus model for metallic bulk materials, Mech. Mater., 139(2019), art. No. 103194. doi: 10.1016/j.mechmat.2019.103194
    [42]
    X.M. Xiao, B. Wang, E.Y. Liu, et al., Investigation of zinc-silver alloys as biodegradable metals for orthopedic applications, J. Mater. Res. Technol., 26(2023), p. 6287. doi: 10.1016/j.jmrt.2023.09.025
    [43]
    K. Wang, X. Tong, J.X. Lin, et al., Binary Zn–Ti alloys for orthopedic applications: Corrosion and degradation behaviors, friction and wear performance, and cytotoxicity, J. Mater. Sci. Technol., 74(2021), p. 216. doi: 10.1016/j.jmst.2020.10.031
    [44]
    L. Liu, T.T. Cao, Q.W. Zhang, and C.W. Cui, Organic phosphorus compounds as inhibitors of corrosion of carbon steel in circulating cooling water: Weight loss method and thermodynamic and quantum chemical studies, Adv. Mater. Sci. Eng., 2018(2018), No. 1, art. No. 1653484. doi: 10.1155/2018/1653484
    [45]
    J.P. Broomfield, An overview of cathodic protection criteria for steel in atmospherically exposed concrete, Corros. Eng. Sci. Technol., 55(2020), No. 4, p. 303. doi: 10.1080/1478422X.2020.1735715
    [46]
    R.W. Evitts and G.F. Kennell, Handbook of Environmental Degradation of Materials, 3rd ed., William Andrew Press, New York, 2018, p. 97.
    [47]
    M. Cao, Z. Xue, Z.Y. Lv, J.L. Sun, Z.Z. Shi, and L.N. Wang, 300 MPa grade highly ductile biodegradable Zn–2Cu–(0.2–0.8)Li alloys with novel ternary phases, J. Mater. Sci. Technol., 157(2023), p. 234. doi: 10.1016/j.jmst.2023.01.048
    [48]
    X.L. Zhu, P.S. Guo, L.J. Yang, et al., Comparison of the in vitro corrosion behavior of biodegradable pure Zn in SBF, 0.9% NaCl, and DMEM, Mater. Corros., 72(2021), No. 10, p. 1687. doi: 10.1002/maco.202112485
    [49]
    Y. Kawamura, N. Osaki, T. Kiguchi, A. Vinogradov, and S. Inoue, Advanced wrought Mg–4.5Al–2.5Ca–0.02Mn (at%) alloys with exceptional balance of high thermal conductivity, yield strength, ductility, nonflammability, and corrosion resistance, J. Alloys Compd., 978(2024), art. No. 173299. doi: 10.1016/j.jallcom.2023.173299
    [50]
    H.Z. Wu, X.X. Xie, J. Wang, G.Z. Ke, H. Huang, Y. Liao, and Q.Q. Kong, Biological properties of Zn–0.04Mg–2Ag: A new degradable zinc alloy scaffold for repairing large-scale bone defects, J. Mater. Res. Technol., 13(2021), p. 1779. doi: 10.1016/j.jmrt.2021.05.096
    [51]
    K.N. Niu, D.C. Zhang, F.G. Qi, J.G. Lin, and Y.L. Dai, The effects of Cu and Mn on the microstructure, mechanical, corrosion properties and biocompatibility of Zn–4Ag alloy, J. Mater. Res. Technol., 21(2022), p. 4969. doi: 10.1016/j.jmrt.2022.11.083
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Share Article

    Article Metrics

    Article Views(373) PDF Downloads(45) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return