The observation on crack initiation and propagation of surface inclusion Al2O3 in seeded PM Rene95 was conducted by SEM in-situ tension test. The results show that the cracks often initiate at the inclusion/matrix interface vertical to the applied stress direction, and easily propagate along the interface into the matrix. The interface of inclusion/matrix is just mechanically bounded on the base of SEM observation. The weak bonding of inclusion/matrix interface and stress concentration around inclusions are the main reasons of the matrix/inclusion interface debonding and local plastic deformation under the tensile loading in the in-situ tension test. Surface inclusion does not definitely lead to the failure of in-situ tension test. But the early surface crack initiation caused by ceramic inclusion is critically harmful to the LCF property of PM Rene95 superalloy, which can't be ignored.