Chengjia Shang, Xuemin Wang, Shanwu Yang, and Xinlai He, Refinement of packet size in low carbon bainitic steel by special thermo-mechanical control process, J. Univ. Sci. Technol. Beijing , 11(2004), No. 3, pp.221-224.
Cite this article as: Chengjia Shang, Xuemin Wang, Shanwu Yang, and Xinlai He, Refinement of packet size in low carbon bainitic steel by special thermo-mechanical control process, J. Univ. Sci. Technol. Beijing , 11(2004), No. 3, pp.221-224.
Materials

Refinement of packet size in low carbon bainitic steel by special thermo-mechanical control process

Author Affilications
Funds: 

This work was financially supported by National Key Basic Research and Development Program of China (No.G1998061507) and Niobium Steel Development Project of CITIC-CBMM (No.2002RMJS-KY001)

  • The packet size of bainitic steel can be refined by a special relaxation-precipitation-control phase transformation (RPC)technology. When processed by RPC process, the low carbon bainitic steel composes of two kinds of main intermediate transformation phases. One is ultra-fine lath-like bainitic ferrite and the lath is less than 1 μm in width and about 6 μm in length; the alignment of laths forms a refined packet, and the size of packets is about 5-7 μm in length and about 3-4 μm in width. The other is acicular structure. The morphology and distribution of these acicular structures are influenced by relaxation process, the thin and short acicular structures cut the prior austenite grain and refine the bainitic packet size. For the optimum relaxation time, the packet size can be refined to the finest. The mechanical properties are influenced by relaxation time and the 800 Mpa grade low carbon bainitic steel with excellent toughness can be obtained by RPC process.
  • Related Articles

    [1]Junkang Chen, Yongyue Zhuang, Yanxin Qiao, Yu Zhang, Aihua Yuan, Hu Zhou. Co/Co7Fe3 heterostructures with controllable alloying degree on carbon spheres as bifunctional electrocatalyst for rechargeable zinc–air batteries [J]. International Journal of Minerals, Metallurgy and Materials, 2025, 32(2): 476-487. DOI: 10.1007/s12613-024-2958-9
    [2]Zhibin Chen, Kang Huang, Bowei Zhang, Jiuyang Xia, Junsheng Wu, Zequn Zhang, Yizhong Huang. Corrosion engineering on AlCoCrFeNi high-entropy alloys toward highly efficient electrocatalysts for the oxygen evolution of alkaline seawater [J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(10): 1922-1932. DOI: 10.1007/s12613-023-2624-7
    [3]Lihua Liu, Ning Li, Jingrui Han, Kaili Yao, Hongyan Liang. Multicomponent transition metal phosphide for oxygen evolution [J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(3): 503-512. DOI: 10.1007/s12613-021-2352-9
    [4]Jian-guo Liu, Long-zhe Jin, Na Gao, Sheng-nan Ou, Shu Wang, Wei-xiang Wang. A review on chemical oxygen supply technology within confined spaces: Challenges, strategies, and opportunities toward chemical oxygen generators (COGs) [J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(8): 925-937. DOI: 10.1007/s12613-019-1809-6
    [5]Jin-fang Ma, Guang-wei Wang, Jian-liang Zhang, Xin-yu Li, Zheng-jian Liu, Ke-xin Jiao, Jian Guo. Reduction behavior and kinetics of vanadium-titanium sinters under high potential oxygen enriched pulverized coal injection [J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(5): 493-503. DOI: 10.1007/s12613-017-1430-5
    [6]Bin Li, Jun-hong Chen, Peng Jiang, Ming-wei Yan, Jia-lin Sun, Yong Li. Reaction behavior of trace oxygen during combustion of falling FeSi75 powder in a nitrogen flow [J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23(8): 959-965. DOI: 10.1007/s12613-016-1312-2
    [7]Hai-tao Yang, Huan-rong Liu, Yong-chun Zhang, Bu-ming Chen, Zhong-cheng Guo, Rui-dong Xu. Properties of a new type Al/Pb-0.3%Ag alloy composite anode for zinc electrowinning [J]. International Journal of Minerals, Metallurgy and Materials, 2013, 20(10): 986-993. DOI: 10.1007/s12613-013-0825-1
    [8]Xiao-ming Liu, Heng-hu Sun, Xiang-peng Feng, Na Zhang. Relationship between the microstructure and reaction performance of aluminosilicate [J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(1): 108-115. DOI: 10.1007/s12613-010-0119-9
    [9]Changhe Gao, Hailei Zhao, Qingguo Liu, Weijiang Wu, Weihua Qiu. Effect of ZrO2 (9mol% Y2O3) coating thickness on the electronic conductivity of Mg-PSZ oxygen sensors [J]. International Journal of Minerals, Metallurgy and Materials, 2005, 12(2): 160-165.
    [10]Xionggang Lu, Fushen Li, Lifen Li, Kouchih Chou. Influence of Conductivity of Slag on Decarburization Reaction [J]. International Journal of Minerals, Metallurgy and Materials, 1998, 5(1): 20-22.
  • Cited by

    Periodical cited type(10)

    1. Boka Fikadu Banti, Mahendra Goddati, Njemuwa Nwaji, et al. Defect Engineered Ru‐CoMOF@MoS2 Heterointerface Facilitate Water Oxidation Process. ChemSusChem, 2025. DOI:10.1002/cssc.202402533
    2. Sameera Sh. Mohammed Ameen, Alaa Bedair, Mahmoud Hamed, et al. Recent Advances in Metal–Organic Frameworks as Oxidase Mimics: A Comprehensive Review on Rational Design and Modification for Enhanced Sensing Applications. ACS Applied Materials & Interfaces, 2025, 17(1): 110. DOI:10.1021/acsami.4c17397
    3. Kumar Sanket, Uttam Kumar, Indrajit Sinha, et al. An oxycarbide-derived-carbon supported nickel ferrite/copper tungstate ternary composite for enhanced electrocatalytic activity towards the oxygen evolution reaction. Dalton Transactions, 2025, 54(2): 797. DOI:10.1039/D4DT02688H
    4. Qiming Fu, Tao Xu, Daomiao Wang, et al. Rare earth modified carbon-based catalysts for oxygen electrode reactions: A machine learning assisted density functional theory investigation. Carbon, 2024, 223: 119045. DOI:10.1016/j.carbon.2024.119045
    5. T.V.M. Sreekanth, B. Naresh, K. Prasad, et al. NiO/ATO as an efficient bifunctional electrocatalysts for oxygen evolution and urea oxidation reactions. Inorganic Chemistry Communications, 2024, 170: 113315. DOI:10.1016/j.inoche.2024.113315
    6. Yashu Liu, Xuan Hao, Cheng Tang, et al. Oxygen Evolution Enhancement of Oxalate-Based Nickel–Iron MOF through Bipyridine Coordinated Strategy. Inorganic Chemistry, 2024, 63(49): 23374. DOI:10.1021/acs.inorgchem.4c04133
    7. Jing Li, Yuanqiang Wang, Zhili Xue, et al. Hierarchical heterostructure regulated by nickel-iron oxyhydroxides on carbon-incorporated cobalt oxide nanorod arrays for efficient oxygen evolution reaction. International Journal of Hydrogen Energy, 2024, 92: 975. DOI:10.1016/j.ijhydene.2024.10.355
    8. Ahmed H. Al-Naggar, Shoyebmohamad F. Shaikh, Rajaram S. Mane. Morphology-aided electrochemical energy storage and electrocatalytic hydrogen evolution reaction activities of Fe-doped nickel hydroxide/oxide nanostructures. Journal of Power Sources, 2024, 624: 235636. DOI:10.1016/j.jpowsour.2024.235636
    9. Shuiping Zhong, Tianhan Lei, Licong Liang, et al. Heterostructuring the CO2-derived Mo2C layer with MoP2 via molten salt electrolysis for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2024, 96: 485. DOI:10.1016/j.ijhydene.2024.11.362
    10. Qipeng Lu, Zhihong Du, Jie Wang, et al. Editorial for special issue on renewable energy conversion, utilization and storage. International Journal of Minerals, Metallurgy and Materials, 2023, 30(10): 1855. DOI:10.1007/s12613-023-2746-y

    Other cited types(0)

Catalog

    Share Article

    Article Metrics

    Article views (287) PDF downloads (19) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return