Jianehua Liu, Jia-nin Chen, Shan Jiane,  and Junshi Cheng, Online LS-SVM for function estimation and classification, J. Univ. Sci. Technol. Beijing, 10(2003), No. 5, pp. 73-77.
Cite this article as:
Jianehua Liu, Jia-nin Chen, Shan Jiane,  and Junshi Cheng, Online LS-SVM for function estimation and classification, J. Univ. Sci. Technol. Beijing, 10(2003), No. 5, pp. 73-77.
Automation

Online LS-SVM for function estimation and classification

+ Author Affiliations
  • Corresponding author:

    Jianehua Liu    E-mail: jhliu99@163.com

  • Received: 28 November 2002
  • An online algorithm for training LS-SVM (Least Square Support Vector Machines) was proposed for the application of function estimation and classification. Online LS-SVM means that LS-SVM can be trained in an incremental way, and can be pruned to get sparse approximation in a decremental way. When a SV (Support Vector) is added or removed, the online algorithm avoids computing large-scale matrix inverse. Thus the computation cost is reduced. Online algorithm is especially useful to realistic function estimation problem such as system identification. The experiments with benchmark function estimation problem and classification problem show the validity of this online algorithm.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article Views(336) PDF Downloads(23) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return