Shuai Zhang, Qianqian Li, Hongcan Chen, Qun Luo, and Qian Li, Icosahedral quasicrystal structure of the Mg40Zn55Nd5 phase and its thermodynamic stability, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1543-1550. https://doi.org/10.1007/s12613-021-2391-2
Cite this article as:
Shuai Zhang, Qianqian Li, Hongcan Chen, Qun Luo, and Qian Li, Icosahedral quasicrystal structure of the Mg40Zn55Nd5 phase and its thermodynamic stability, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1543-1550. https://doi.org/10.1007/s12613-021-2391-2
Research Article

Icosahedral quasicrystal structure of the Mg40Zn55Nd5 phase and its thermodynamic stability

+ Author Affiliations
  • Corresponding authors:

    Qun Luo    E-mail: qunluo@shu.edu.cn

    Qian Li    E-mail: cquliqian@cqu.edu.cn

  • Received: 30 August 2021Revised: 12 November 2021Accepted: 1 December 2021Available online: 3 December 2021
  • The quasicrystal phase is beneficial to increasing the strength of magnesium alloys. However, its complicated structure and unclear phase relations impede the design of alloys with good mechanical properties. In this paper, the Mg40Zn55Nd5 icosahedral quasicrystal (I-phase) structure is discovered in an as-cast Mg–58Zn–4Nd alloy by atomic resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). A cloud-like morphology is observed with Mg41.6Zn55.0Nd3.4 composition. The selected area electronic diffraction (SAED) analysis shows that the icosahedral quasicrystal structure has 5-fold, 4-fold, 3-fold, and 2-fold symmetry zone axes. The thermodynamic stability of the icosahedral quasicrystal is investigated by differential scanning calorimetry (DSC) in the annealed alloys. When annealed above 300°C, the Mg40Zn55Nd5 quasicrystal is found to decompose into a stable ternary phase Mg35Zn60Nd5, a binary phase MgZn, and α-Mg, suggesting that the quasicrystal is a metastable phase in the Mg–Zn–Nd system.
  • loading
  • [1]
    Y.Z. Ma, C.L. Yang, Y.J. Liu, F.S. Yuan, S.S. Liang, H.X. Li, and J.S. Zhang, Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg–xZn–0.2Ca alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1274. doi: 10.1007/s12613-019-1860-3
    [2]
    N.A. Ali and M. Ismail, Advanced hydrogen storage of the Mg–Na–Al system: A review, J. Magnes. Alloys, 9(2021), No. 4, p. 1111. doi: 10.1016/j.jma.2021.03.031
    [3]
    Q. Li, X. Lin, Q. Luo, Y.A. Chen, J.F. Wang, B. Jiang, and F.S. Pan, Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32. doi: 10.1007/s12613-021-2337-8
    [4]
    Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, and Q. Li, Understanding grain refining and anti Si-poisoning effect in Al–10Si/Al–5Nb–B system, J. Mater. Sci. Technol., 65(2021), p. 190. doi: 10.1016/j.jmst.2020.04.075
    [5]
    J.L. Su, J. Teng, Z.L. Xu, and Y. Li, Biodegradable magnesium-matrix composites: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 724. doi: 10.1007/s12613-020-1987-2
    [6]
    H. Elkholy, H. Othman, I. Hager, M. Ibrahim, and D. de Ligny, Thermal and optical properties of binary magnesium tellurite glasses and their link to the glass structure, J. Alloys Compd., 823(2020), art. No. 153781. doi: 10.1016/j.jallcom.2020.153781
    [7]
    J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnes. Alloys, 8(2020), No. 1, p. 1. doi: 10.1016/j.jma.2020.02.003
    [8]
    Y.C. Zhou, Q. Luo, B. Jiang, Q. Li, and F.S. Pan, Strength-ductility synergy in Mg98.3Y1.3Ni0.4 alloy processed by high temperature homogenization and rolling, Scripta Mater., 208(2022), art. No. 114345. doi: 10.1016/j.scriptamat.2021.114345
    [9]
    W.Q. Tang, J.Y. Lee, H.M. Wang, D. Steglich, D.Y. Li, Y.H. Peng, and P.D. Wu, Unloading behaviors of the rare-earth magnesium alloy ZE10 sheet, J. Magnes. Alloys, 9(2021), No. 3, p. 927. doi: 10.1016/j.jma.2020.02.023
    [10]
    T.C. Xie, H. Shi, H.B. Wang, Q. Luo, Q. Li, and K.C. Chou, Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg–Zn–La/Ce system, J. Mater. Sci. Technol., 97(2022), p. 147. doi: 10.1016/j.jmst.2021.04.044
    [11]
    M. Gao, Z. Ma, I.P. Etim, L.L. Tan, and K. Yang, Microstructure, mechanical and corrosion properties of Mg–Zn–Nd alloy with different accumulative area reduction after room-temperature drawing, Rare Met., 40(2021), No. 4, p. 897. doi: 10.1007/s12598-020-01460-y
    [12]
    H.J. Si, Y.X. Jiang, Y. Tang, and L.J. Zhang, Stable and metastable phase equilibria in binary Mg–Gd system: A comprehensive understanding aided by CALPHAD modeling, J. Magnes. Alloys, 7(2019), No. 3, p. 501. doi: 10.1016/j.jma.2019.04.006
    [13]
    Y.L. Guo, B. Liu, W. Xie, Q. Luo, and Q. Li, Anti-phase boundary energy of β series precipitates in Mg–Y–Nd system, Scripta Mater., 193(2021), p. 127. doi: 10.1016/j.scriptamat.2020.11.004
    [14]
    L. Li, D.J. Li, X.Q. Zeng, A.A. Luo, B. Hu, A.K. Sachdev, L.L. Gu, and W.J. Ding, Microstructural evolution of Mg–Al–Re alloy reinforced with alumina fibers, J. Magnes. Alloys, 8(2020), No. 3, p. 565. doi: 10.1016/j.jma.2019.07.012
    [15]
    H. Zengin and Y. Turen, Effect of Y addition on microstructure and corrosion behavior of extruded Mg–Zn–Nd–Zr alloy, J. Magnes. Alloys, 8(2020), No. 3, p. 640. doi: 10.1016/j.jma.2020.06.004
    [16]
    Q. Li, X.D. Peng, and F.S. Pan, Magnesium-based materials for energy conversion and storage, J. Magnes. Alloys, 9(2021), No. 6, p. 2223. doi: 10.1016/j.jma.2021.11.003
    [17]
    Z. Zhang, J.H. Zhang, J. Wang, Z.H. Li, J.S. Xie, S.J. Liu, K. Guan, and R.Z. Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
    [18]
    Y.B. Wang, S.S. Jia, M.G. Wei, L.M. Peng, Y.J. Wu, and X.T. Liu, Research progress on solidification structure of alloys by synchrotron X-ray radiography: A review, J. Magnes. Alloys, 8(2020), No. 2, p. 396. doi: 10.1016/j.jma.2019.08.003
    [19]
    Q. Li, Y.F. Lu, Q. Luo, X.H. Yang, Y. Yang, J. Tan, Z.H. Dong, J. Dang, J.B. Li, Y. Chen, B. Jiang, S.H. Sun, and F.S. Pan, Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials, J. Magnes. Alloys, 9(2021), No. 6, p. 1922. doi: 10.1016/j.jma.2021.10.002
    [20]
    Y.P. Pang, D.K. Sun, Q.F. Gu, K.C. Chou, X.L. Wang, and Q. Li, Comprehensive determination of kinetic parameters in solid-state phase transitions: An extended jonhson–mehl–avrami–kolomogorov model with analytical solutions, Cryst. Growth Des., 16(2016), No. 4, p. 2404. doi: 10.1021/acs.cgd.6b00187
    [21]
    F. Samadpour, G. Faraji, and A. Siahsarani, Processing of AM60 magnesium alloy by hydrostatic cyclic expansion extrusion at elevated temperature as a new severe plastic deformation method, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 669. doi: 10.1007/s12613-019-1921-7
    [22]
    X. Gao and J.F. Nie, Structure and thermal stability of primary intermetallic particles in an Mg–Zn casting alloy, Scripta Mater., 57(2007), No. 7, p. 655. doi: 10.1016/j.scriptamat.2007.06.005
    [23]
    Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, and K.C. Chou, Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review, J. Mater. Sci. Technol., 44(2020), p. 171. doi: 10.1016/j.jmst.2020.01.022
    [24]
    A.R. Wu, Y. Gu, and C.Q. Xia, Study of microstructure and properties of Mg–RE(Ce Nd Y)–Zn–Zr alloys, Hot Working Technol., 33(2004), No. 12, p. 21.
    [25]
    Y. Zhang, X.Q. Zeng, L.F. Liu, C. Lu, H.T. Zhou, Q. Li, and Y.P. Zhu, Effects of yttrium on microstructure and mechanical properties of hot-extruded Mg–Zn–Y–Zr alloys, Mater. Sci. Eng. A, 373(2004), No. 1-2, p. 320. doi: 10.1016/j.msea.2004.02.007
    [26]
    X.P. Zhang, G.Y. Yuan, Y. Liu, and W.J. Ding, Effects of alloying elements on the microstructure and mechanical properties of Mg–Zn–Gd alloys, Special Cast. Nonferrous Alloys, 28(2008), No. 11, p. 882.
    [27]
    Y.G. Jung, W. Yang, J.I. Hyun, S.K. Kim, H. Lim, and D.H. Kim, Effects of I- and W-phases under identical conditions on microstructure and mechanical properties of as-cast Mg–Zn–Y alloys at room and elevated temperatures, Met. Mater. Int., 27(2021), No. 12, p. 5154. doi: 10.1007/s12540-020-00848-w
    [28]
    W.B. Luo, Z.Y. Xue, and W.M. Mao, Effect of heat treatment on the microstructure and micromechanical properties of the rapidly solidified Mg61.7Zn34Gd4.3 alloy containing icosahedral phase, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 869. doi: 10.1007/s12613-019-1799-4
    [29]
    D.H. Bae, S.H. Kim, D.H. Kim, and W.T. Kim, Deformation behavior of Mg–Zn–Y alloys reinforced by icosahedral quasicrystalline particles, Acta Mater., 50(2002), No. 9, p. 2343. doi: 10.1016/S1359-6454(02)00067-8
    [30]
    S.M. Zhu, T.B. Abbott, M.A. Gibson, J.F. Nie, and M.A. Easton, The influence of minor Mn additions on creep resistance of die-cast Mg–Al–RE alloys, Mater. Sci. Eng. A, 682(2017), p. 535. doi: 10.1016/j.msea.2016.11.075
    [31]
    D. Shechtman, I. Blech, D. Gratias, and J.W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., 53(1984), No. 20, p. 1951. doi: 10.1103/PhysRevLett.53.1951
    [32]
    A. Langsdorf, F. Ritter, and W. Assmus, Determination of the primary solidification area of the icosahedral phase in the ternary phase diagram of Zn–Mg–Y, Philos. Mag. Lett., 75(1997), No. 6, p. 381. doi: 10.1080/095008397179453
    [33]
    E. Abe, T.J. Sato, and A.P. Tsai, Structure and phase transformation of the Zn–Mg-rare-earth quasicrystals, Mater. Sci. Eng. A, 294-296(2000), p. 29. doi: 10.1016/S0921-5093(00)01312-5
    [34]
    S. Yi, E.S. Park, J.B. Ok, W.T. Kim, and D.H. Kim, (Icosahedral phase+α-Mg) two phase microstructures in the Mg–Zn–Y ternary system, Mater. Sci. Eng. A, 300(2001), No. 1-2, p. 312. doi: 10.1016/S0921-5093(00)01474-X
    [35]
    J.S. Zhang, J. Yan, W. Liang, C.X. Xu, and C.L. Zhou, Icosahedral quasicrystal phase in Mg–Zn–Nd ternary system, Mater. Lett., 62(2008), No. 30, p. 4489. doi: 10.1016/j.matlet.2008.08.005
    [36]
    C.P. Yang, Effect of Solidification Rate and Heattreatment on Microstructure Evolution of MgZnNd Quasicrystal Alloy [Dissertation]. University of Jinan, Jinan, 2015, p. 40.
    [37]
    L. Yang, H. Hou, Y.H. Zhao, X.M. Yang, and X.J. Hao, Effects of heat treatment on microstructure and properties of Mg–45Zn–1.5Nd alloy, Trans. Mater. Heat Treat., 35(2014), No. 8, p. 53.
    [38]
    M.L. Huang, J.Y. Yang, H.X. Li, Y.P. Ren, H. Ding, and S.M. Hao, Research on the local equilibria in the Mg-rich coener of the Mg–Zn–Nd system at 300°C, J. Mater. Metal., 7(2008), No. 2, p. 126.
    [39]
    A. Mostafa and M. Medraj, Experimental investigation of the Mg–Nd–Zn isothermal section at 300°C, Metals, 5(2015), No. 1, p. 84. doi: 10.3390/met5010084
    [40]
    C. Zhang, A.A. Luo, L.M. Peng, D.S. Stone, and Y.A. Chang, Thermodynamic modeling and experimental investigation of the magnesium–neodymium–zinc alloys, Intermetallics, 19(2011), No. 11, p. 1720. doi: 10.1016/j.intermet.2011.07.001
    [41]
    J.S. Zhang, J. Yan, W. Liang, E.L. Du, and C.X. Xu, Microstructures of Mg–Zn–Nd alloy including small quasicrystalline grains, J. Non Cryst. Solids, 355(2009), No. 14-15, p. 836. doi: 10.1016/j.jnoncrysol.2009.04.022
    [42]
    A. Niikura, A.P. Tsai, A. Inoue, and T. Masumoto, New class of amorphous and icosahedral phases in Zn–Mg–rare-earth metal alloys, Jpn. J. Appl. Phys., 33(1994), p. L1538. doi: 10.1143/JJAP.33.L1538
    [43]
    X.J. Ge, Study on the Formation and Stability of Quasicrystal Phase in MgZnNd Alloys [Dissertation]. University of Jinan, Jinan, 2018, p. 39.
    [44]
    J. Gröbner, A. Kozlov, X.Y. Fang, J. Geng, J.F. Nie, and R. Schmid-Fetzer, Phase equilibria and transformations in ternary Mg-rich Mg–Y–Zn alloys, Acta Mater., 60(2012), No. 17, p. 5948. doi: 10.1016/j.actamat.2012.05.035
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(1855) PDF Downloads(57) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return