Wanlin Wang, Cheng Lu, Liang Hao, Jie Zeng, Lejun Zhou, Xinyuan Liu, Xia Li, and Chenyang Zhu, Effect of phosphorus content on interfacial heat transfer and film deposition behavior during the high-temperature simulation of strip casting, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2763-x
Cite this article as:
Wanlin Wang, Cheng Lu, Liang Hao, Jie Zeng, Lejun Zhou, Xinyuan Liu, Xia Li, and Chenyang Zhu, Effect of phosphorus content on interfacial heat transfer and film deposition behavior during the high-temperature simulation of strip casting, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2763-x
Research Article

Effect of phosphorus content on interfacial heat transfer and film deposition behavior during the high-temperature simulation of strip casting

+ Author Affiliations
  • Corresponding author:

    Chenyang Zhu    E-mail: chenyang.zhu@csu.edu.cn

  • Received: 12 June 2023Revised: 11 October 2023Accepted: 12 October 2023Available online: 13 October 2023
  • The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel. A high-temperature simulation of strip casting was conducted using the droplet solidification technique with the aims to reveal the effects of phosphorus content on interfacial wettability, deposited film, and interfacial heat transfer behavior. Results showed that when the phosphorus content increased from 0.014wt% to 0.406wt%, the mushy zone enlarged, the complete solidification temperature delayed from 1518.3 to 1459.4°C, the final contact angle decreased from 118.4° to 102.8°, indicating improved interfacial contact, and the maximum heat flux increased from 6.9 to 9.2 MW/m2. Increasing the phosphorus content from 0.081wt% to 0.406wt% also accelerated the film deposition rate from 1.57 to 1.73 μm per test, resulting in a thickened naturally deposited film with increased thermal resistance that advanced the transition point of heat transfer from the fifth experiment to the third experiment.
  • loading
  • [1]
    C.A.D. Rodrigues, R.M. Bandeira, B.B. Duarte, G. Tremiliosi-Filho, and A.M. Jorge Jr., Effect of phosphorus content on the mechanical, microstructure and corrosion properties of supermartensitic stainless steel, Mater. Sci. Eng. A, 650(2016), p. 75. doi: 10.1016/j.msea.2015.10.013
    [2]
    S.K. Choudhary, S. Ganguly, A. Sengupta, and V. Sharma, Solidification morphology and segregation in continuously cast steel slab, J. Mater. Process. Technol., 243(2017), p. 312. doi: 10.1016/j.jmatprotec.2016.12.030
    [3]
    P. Nolli, Initial Solidification Phenomena : Factors Affecting Heat Transfer in Strip Casting [Dissertation], Carnegie Mellon University, Pittsburgh, 2007.
    [4]
    C.Y. Zhu, J. Zeng, and W.L. Wang, Twin-roll strip casting of advanced metallic materials, Sci. China Technol. Sci., 65(2022), No. 3, p. 493. doi: 10.1007/s11431-020-1800-8
    [5]
    P. Campbell, W. Blejde, R. Mahapatra, and R. Wechsler, Recent progress on commercialization of castrip® direct strip casting technology at Nucor Crawfordsville, Metallurgist, 48(2004), No. 9, p. 507. doi: 10.1007/s11015-005-0016-z
    [6]
    K.H. Spitzer, F. Rüppel, R. Viščorová, R. Scholz, J. Kroos, and V. Flaxa, Direct strip casting (DSC) – An option for the production of new steel grades, Steel Res. Int., 74(2003), No. 11-12, p. 724. doi: 10.1002/srin.200300256
    [7]
    S. Ge, M. Isac and R.I.L. Guthrie, Progress of strip casting technology for steel; historical developments, ISIJ Int., 52(2012), No. 12, p. 2109. doi: 10.2355/isijinternational.52.2109
    [8]
    S. Ge, M. Isac and R.I.L. Guthrie, Progress in strip casting technologies for steel; Technical developments, ISIJ Int., 53(2013), No. 5, p. 729. doi: 10.2355/isijinternational.53.729
    [9]
    K. Shibuya and M. Ozawa, Strip casting techniques for steel, ISIJ Int., 31(1991), No. 7, p. 661. doi: 10.2355/isijinternational.31.661
    [10]
    J.D. Hwang, H.J. Lin, J.S.C. Jang, W.S. Hwang, and C.T. Hu, Relationship between flow characteristics and surface quality in inclined twin roll strip casting, ISIJ Int., 36(1996), No. 6, p. 690. doi: 10.2355/isijinternational.36.690
    [11]
    H. Yasunaka, K. Taniguchi, M. Kokita, and T. Inoue, Surface quality of stainless steel type 304 cast by twin-roll type strip caster, ISIJ Int., 35(1995), No. 6, p. 784. doi: 10.2355/isijinternational.35.784
    [12]
    D.K. Choo, H.K. Moon, T. Kang, and S. Lee, Analysis and prevention of cracking during strip casting of AISI 304 stainless steel, Metall. Mater. Trans. A, 32(2001), No. 9, p. 2249. doi: 10.1007/s11661-001-0200-0
    [13]
    Y. Wang, Y.B. Xu, Y.X. Zhang, et al., Development of microstructure and texture in strip casting grain oriented silicon steel, J. Magn. Magn. Mater., 379(2015), p. 161. doi: 10.1016/j.jmmm.2014.12.043
    [14]
    Z.P. Xiong, A.G. Kostryzhev, N.E. Stanford, and E.V. Pereloma, Effect of deformation on microstructure and mechanical properties of dual phase steel produced via strip casting simulation, Mater. Sci. Eng. A, 651(2016), p. 291. doi: 10.1016/j.msea.2015.10.120
    [15]
    C.A. Muojekwu, I.V. Samarasekera, and J.K. Brimacombe, Heat transfer and microstructure during the early stages of metal solidification, Metall. Mater. Trans. B, 26(1995), No. 2, p. 361. doi: 10.1007/BF02660979
    [16]
    H. Xu, W.L. Wang, C. Lu, P.S. Lv, and C.Y. Zhu, Evolution of solidification structure for Si–Mn bearing AHSS under typical cooling rates, J. Mater. Res. Technol., 15(2021), p. 524. doi: 10.1016/j.jmrt.2021.08.057
    [17]
    C.Y. Zhu, J. Zeng, W.L. Wang, S. Chang, and C. Lu, Mechanism of δ → δ + γ phase transformation and hardening behavior of duplex stainless steel via subrapid solidification process, Mater. Charact., 170(2020), art. No. 110679. doi: 10.1016/j.matchar.2020.110679
    [18]
    N. Phinichka, The Effect of Surface Tension , Superheat and Surface Films on the Rate of Heat Transfer from an Iron Droplet to a Water Cooled Copper Mold [Dissertation], Carnegie Mellon University, Pittsburgh, 2001.
    [19]
    L. Strezov, J. Herbertson, and G.R. Belton, Mechanisms of initial melt/substrate heat transfer pertinent to strip casting, Metall. Mater. Trans. B, 31(2000), No. 5, p. 1023. doi: 10.1007/s11663-000-0078-z
    [20]
    L. Strezov and J. Herbertson, Experimental studies of interfacial heat transfer and initial solidification pertinent to strip casting, ISIJ Int., 38(1998), No. 9, p. 959. doi: 10.2355/isijinternational.38.959
    [21]
    H. Todoroki, R. Lertarom, A.W. Cramb, I. Jimbo, and T. Suzuki, Evaluation of the initiation of solidification of iron against a water cooled copper mold [in] the 54th Electric Furnace Conference Proceedings, Dallas, 1996, p. 585.
    [22]
    H. Todoroki, R. Lertarom, T. Suzuki, and A.W. Cramb, Solidiflcation of steel droplets against a water cooled copper mold [in] the Proceedings of the Alex McLean Symposium, Toronto, 1998, p. 155.
    [23]
    W.L. Wang, C.Y. Zhu, C. Lu, J. Yu, and L.J. Zhou, Study of the heat transfer behavior and naturally deposited films in strip casting by using droplet solidification technique, Metall. Mater. Trans. A, 49(2018), No. 11, p. 5524. doi: 10.1007/s11661-018-4850-6
    [24]
    C. Lu, W.L. Wang, J. Zeng, C.Y. Zhu, and J. Chang, Effect of naturally deposited film on the sub-rapid solidification of medium manganese steel by using droplet solidification technique, Metall. Mater. Trans. B, 50(2019), No. 1, p. 77. doi: 10.1007/s11663-018-1449-7
    [25]
    W.L. Wang, L.W. Xue, T.S. Zhang, L.J. Zhou, J.Y. Chen, and Z.H. Pan, Thermodynamic corrosion behavior of Al2O3, ZrO2 and MgO refractories in contact with high basicity refining slag, Ceram. Int., 45(2019), No. 16, p. 20664. doi: 10.1016/j.ceramint.2019.07.049
    [26]
    H.H. Zhang, W.L. Wang, D. Zhou, F.J. Ma, B.X. Lu, and L.J. Zhou, A study for initial solidification of Sn–Pb alloy during continuous casting: Part I. the development of the technique, Metall. Mater. Trans. B, 45(2014), No. 3, p. 1038. doi: 10.1007/s11663-013-9967-9
    [27]
    D. Zhou, W.L. Wang, H.H. Zhang, F.J. Ma, K. Chen, and L.J. Zhou, A study for initial solidification of Sn–Pb alloy during continuous casting: Part II. effects of casting parameters on initial solidification and shell surface, Metall. Mater. Trans. B, 45(2014), No. 3, p. 1048. doi: 10.1007/s11663-014-0058-3
    [28]
    H.H. Zhang and W.L. Wang, Mold simulator study of heat transfer phenomenon during the initial solidification in continuous casting mold, Metall. Mater. Trans. B, 48(2017), No. 2, p. 779. doi: 10.1007/s11663-016-0901-9
    [29]
    C. Lu, W.L. Wang, and C.Y. Zhu, Sub-rapid solidification study by using droplet solidification technique, [in] J. Nakano, P.C. Pistorius, C. Tamerler et al., eds., Advanced Real Time Imaging II. The Minerals , Metals & Materials Series, Springer, Cham, 2019, p. 111.
    [30]
    W.L. Wang, D.W. Cai, C. Lu, P.S. Lyu, C.Y. Zhu, and J. Zeng, Formation of deposited oxide film during the sub-rapid solidification of silicon steel droplet and its effect on interfacial heat transfer behavior, Metall. Mater. Trans. B, 53(2022), No. 1, p. 198. doi: 10.1007/s11663-021-02356-7
    [31]
    C.Y. Zhu, W.L. Wang, and C. Lu, Characterization of cermet coatings and its effect on the responding heat transfer performance in strip casting process, J. Alloys Compd., 770(2019), p. 631. doi: 10.1016/j.jallcom.2018.08.153
    [32]
    J. Elfsberg and T. Matsushita, Measurements and calculation of interfacial tension between commercial steels and mould flux slags, Steel Res. Int., 82(2011), No. 4, p. 404. doi: 10.1002/srin.201000221
    [33]
    Y. Yu, A.W. Cramb, R. Heard, Y. Fang, and J. Cui, The effect of oxygen partial pressure on heat transfer and solidification, ISIJ Int., 46(2006), No. 10, p. 1427. doi: 10.2355/isijinternational.46.1427
    [34]
    C. Lu, W.L. Wang, J. Zeng, X.Y. Liu, and H.L. Li, Effect of chromium coating roughness and thickness on interfacial heat transfer behaviour of sub-rapid solidification process, Philos. Mag., 103(2023), No. 2, p. 171. doi: 10.1080/14786435.2022.2141904
    [35]
    A. Karasangabo and C. Bernhard, Investigation of alumina wetting by Fe–Ti, Fe–P and Fe–Ti–P alloys, J. Adhes. Sci. Technol., 26(2012), No. 8-9, p. 1141. doi: 10.1163/016942411X580252
    [36]
    C.Y. Zhu, W.L. Wang, J. Zeng, C. Lu, L.J. Zhou, and J. Chang, Interactive relationship between the superheat, interfacial heat transfer, deposited film and microstructure in strip casting of duplex stainless steel, ISIJ Int., 59(2019), No. 5, p. 880. doi: 10.2355/isijinternational.ISIJINT-2018-747
    [37]
    W.X. Zhou, Y. Cheng, K.Q. Cheng, G.F. Xie, T. Wang, and G. Zhang, Thermal conductivity of amorphous materials, Adv. Funct. Mater., 30(2020), No. 8, art. No. 1903829. doi: 10.1002/adfm.201903829
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(182) PDF Downloads(13) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return